3,173 research outputs found

    An Autonomous Surface Vehicle for Long Term Operations

    Full text link
    Environmental monitoring of marine environments presents several challenges: the harshness of the environment, the often remote location, and most importantly, the vast area it covers. Manual operations are time consuming, often dangerous, and labor intensive. Operations from oceanographic vessels are costly and limited to open seas and generally deeper bodies of water. In addition, with lake, river, and ocean shoreline being a finite resource, waterfront property presents an ever increasing valued commodity, requiring exploration and continued monitoring of remote waterways. In order to efficiently explore and monitor currently known marine environments as well as reach and explore remote areas of interest, we present a design of an autonomous surface vehicle (ASV) with the power to cover large areas, the payload capacity to carry sufficient power and sensor equipment, and enough fuel to remain on task for extended periods. An analysis of the design and a discussion on lessons learned during deployments is presented in this paper.Comment: In proceedings of MTS/IEEE OCEANS, 2018, Charlesto

    Towards a Probabilistic Roadmap for Multi-robot Coordination

    Get PDF
    International audienceIn this paper, we discuss the problem of multi-robot coordination and propose an approach for coordinated multi-robot motion planning by using a probabilistic roadmap (PRM) based on adaptive cross sampling (ACS). The proposed approach, called ACS-PRM, is a sampling-based method and consists of three steps including C-space sampling, roadmap building and motion planning. In contrast to previous approaches, our approach is designed to plan separate kinematic paths for multiple robots to minimize the problem of congestion and collision in an effective way so as to improve the system efficiency. Our approach has been implemented and evaluated in simulation. The experimental results demonstrate the total planning time can be obviously reduced by our ACS-PRM approach compared with previous approaches

    ACS-PRM: Adaptive Cross Sampling Based Probabilistic Roadmap for Multi-robot Motion Planning

    Get PDF
    International audienceIn this paper we present a novel approach for multi-robot motion planning by using a probabilistic roadmap (PRM) based on adaptive cross sampling (ACS). The proposed approach, we call ACS-PRM, consists of three steps, which are C-space sampling, roadmap building and motion planning. Firstly, an adequate number of points should be generated in C-space on an occupancy grid map by using an adaptive cross sampling method. Secondly, a roadmap should be built while the potential targets and the milestones are extracted by second learning the result of sampling. Finally, the motion of robots should be planned by querying the constructed roadmap. In contrast to previous approaches, our ACS-PRM approach is designed to plan separate kinematic paths for multiple robots to minimize the problem of congestion and collision in an effective way so as to improve the planning efficiency. Our approach has been implemented and evaluated in simulation. The experimental results demonstrate the total planning time can be significantly reduced by our ACS-PRM approach compared with previous approaches

    An Underwater SLAM System using Sonar, Visual, Inertial, and Depth Sensor

    Full text link
    This paper presents a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system with loop-closing and relocalization capabilities targeted for the underwater domain. Our previous work, SVIn, augmented the state-of-the-art visual-inertial state estimation package OKVIS to accommodate acoustic data from sonar in a non-linear optimization-based framework. This paper addresses drift and loss of localization -- one of the main problems affecting other packages in underwater domain -- by providing the following main contributions: a robust initialization method to refine scale using depth measurements, a fast preprocessing step to enhance the image quality, and a real-time loop-closing and relocalization method using bag of words (BoW). An additional contribution is the addition of depth measurements from a pressure sensor to the tightly-coupled optimization formulation. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle from challenging underwater environments with poor visibility demonstrate performance never achieved before in terms of accuracy and robustness
    • …
    corecore