2,995 research outputs found

    Flattening an object algebra to provide performance

    Get PDF
    Algebraic transformation and optimization techniques have been the method of choice in relational query execution, but applying them in object-oriented (OO) DBMSs is difficult due to the complexity of OO query languages. This paper demonstrates that the problem can be simplified by mapping an OO data model to the binary relational model implemented by Monet, a state-of-the-art database kernel. We present a generic mapping scheme to flatten data models and study the case of straightforward OO model. We show how flattening enabled us to implement a query algebra, using only a very limited set of simple operations. The required primitives and query execution strategies are discussed, and their performance is evaluated on the 1-GByte TPC-D (Transaction-processing Performance Council's Benchmark D), showing that our divide-and-conquer approach yields excellent result

    Heterogeneous substitution systems revisited

    Full text link
    Matthes and Uustalu (TCS 327(1-2):155-174, 2004) presented a categorical description of substitution systems capable of capturing syntax involving binding which is independent of whether the syntax is made up from least or greatest fixed points. We extend this work in two directions: we continue the analysis by creating more categorical structure, in particular by organizing substitution systems into a category and studying its properties, and we develop the proofs of the results of the cited paper and our new ones in UniMath, a recent library of univalent mathematics formalized in the Coq theorem prover.Comment: 24 page

    The Mirror MMDBMS architecture

    Get PDF
    Handling large collections of digitized multimedia data, usually referred to as multimedia digital libraries, is a major challenge for information technology. The Mirror DBMS is a research database system that is developed to better understand the kind of data management that is required in the context of multimedia digital libraries (see also URL http://www.cs.utwente.nl/~arjen/mmdb.html). Its main features are an integrated approach to both content management and (traditional) structured data management, and the implementation of an extensible object-oriented logical data model on a binary relational physical data model. The focus of this work is aimed at design for scalability

    Moa and the multi-model architecture: a new perspective on XNF2

    Get PDF
    Advanced non-traditional application domains such as geographic information systems and digital library systems demand advanced data management support. In an effort to cope with this demand, we present the concept of a novel multi-model DBMS architecture which provides evaluation of queries on complexly structured data without sacrificing efficiency. A vital role in this architecture is played by the Moa language featuring a nested relational data model based on XNF2, in which we placed renewed interest. Furthermore, extensibility in Moa avoids optimization obstacles due to black-box treatment of ADTs. The combination of a mapping of queries on complexly structured data to an efficient physical algebra expression via a nested relational algebra, extensibility open to optimization, and the consequently better integration of domain-specific algorithms, makes that the Moa system can efficiently and effectively handle complex queries from non-traditional application domains

    C++ Templates as Partial Evaluation

    Full text link
    This paper explores the relationship between C++ templates and partial evaluation. Templates were designed to support generic programming, but unintentionally provided the ability to perform compile-time computations and code generation. These features are completely accidental, and as a result their syntax is awkward. By recasting these features in terms of partial evaluation, a much simpler syntax can be achieved. C++ may be regarded as a two-level language in which types are first-class values. Template instantiation resembles an offline partial evaluator. This paper describes preliminary work toward a single mechanism based on Partial Evaluation which unifies generic programming, compile-time computation and code generation. The language Catat is introduced to illustrate these ideas.Comment: 13 page

    Challenging Ubiquitous Inverted Files

    Get PDF
    Stand-alone ranking systems based on highly optimized inverted file structures are generally considered ‘the’ solution for building search engines. Observing various developments in software and hardware, we argue however that IR research faces a complex engineering problem in the quest for more flexible yet efficient retrieval systems. We propose to base the development of retrieval systems on ‘the database approach’: mapping high-level declarative specifications of the retrieval process into efficient query plans. We present the Mirror DBMS as a prototype implementation of a retrieval system based on this approach
    corecore