349 research outputs found

    Safe Learning of Quadrotor Dynamics Using Barrier Certificates

    Full text link
    To effectively control complex dynamical systems, accurate nonlinear models are typically needed. However, these models are not always known. In this paper, we present a data-driven approach based on Gaussian processes that learns models of quadrotors operating in partially unknown environments. What makes this challenging is that if the learning process is not carefully controlled, the system will go unstable, i.e., the quadcopter will crash. To this end, barrier certificates are employed for safe learning. The barrier certificates establish a non-conservative forward invariant safe region, in which high probability safety guarantees are provided based on the statistics of the Gaussian Process. A learning controller is designed to efficiently explore those uncertain states and expand the barrier certified safe region based on an adaptive sampling scheme. In addition, a recursive Gaussian Process prediction method is developed to learn the complex quadrotor dynamics in real-time. Simulation results are provided to demonstrate the effectiveness of the proposed approach.Comment: Submitted to ICRA 2018, 8 page

    Accurate Tracking of Aggressive Quadrotor Trajectories using Incremental Nonlinear Dynamic Inversion and Differential Flatness

    Full text link
    Autonomous unmanned aerial vehicles (UAVs) that can execute aggressive (i.e., high-speed and high-acceleration) maneuvers have attracted significant attention in the past few years. This paper focuses on accurate tracking of aggressive quadcopter trajectories. We propose a novel control law for tracking of position and yaw angle and their derivatives of up to fourth order, specifically, velocity, acceleration, jerk, and snap along with yaw rate and yaw acceleration. Jerk and snap are tracked using feedforward inputs for angular rate and angular acceleration based on the differential flatness of the quadcopter dynamics. Snap tracking requires direct control of body torque, which we achieve using closed-loop motor speed control based on measurements from optical encoders attached to the motors. The controller utilizes incremental nonlinear dynamic inversion (INDI) for robust tracking of linear and angular accelerations despite external disturbances, such as aerodynamic drag forces. Hence, prior modeling of aerodynamic effects is not required. We rigorously analyze the proposed control law through response analysis, and we demonstrate it in experiments. The controller enables a quadcopter UAV to track complex 3D trajectories, reaching speeds up to 12.9 m/s and accelerations up to 2.1g, while keeping the root-mean-square tracking error down to 6.6 cm, in a flight volume that is roughly 18 m by 7 m and 3 m tall. We also demonstrate the robustness of the controller by attaching a drag plate to the UAV in flight tests and by pulling on the UAV with a rope during hover.Comment: To be published in IEEE Transactions on Control Systems Technology. Revision: new set of experiments at increased speed (up to 12.9 m/s), updated controller design using quaternion representation, new video available at https://youtu.be/K15lNBAKDC

    Perception-aware time optimal path parameterization for quadrotors

    Full text link
    The increasing popularity of quadrotors has given rise to a class of predominantly vision-driven vehicles. This paper addresses the problem of perception-aware time optimal path parametrization for quadrotors. Although many different choices of perceptual modalities are available, the low weight and power budgets of quadrotor systems makes a camera ideal for on-board navigation and estimation algorithms. However, this does come with a set of challenges. The limited field of view of the camera can restrict the visibility of salient regions in the environment, which dictates the necessity to consider perception and planning jointly. The main contribution of this paper is an efficient time optimal path parametrization algorithm for quadrotors with limited field of view constraints. We show in a simulation study that a state-of-the-art controller can track planned trajectories, and we validate the proposed algorithm on a quadrotor platform in experiments.Comment: Accepted to appear at ICRA 202

    A Comparative Study of Nonlinear MPC and Differential-Flatness-Based Control for Quadrotor Agile Flight

    Get PDF
    Accurate trajectory-tracking control for quadrotors is essential for safe navigation in cluttered environments. However, this is challenging in agile flights due to nonlinear dynamics, complex aerodynamic effects, and actuation constraints. In this article, we empirically compare two state-of-the-art control frameworks: the nonlinear-model-predictive controller (NMPC) and the differential-flatness-based controller (DFBC), by tracking a wide variety of agile trajectories at speeds up to 20 m/s (i.e., 72 km/h). The comparisons are performed in both simulation and real-world environments to systematically evaluate both methods from the aspect of tracking accuracy, robustness, and computational efficiency. We show the superiority of the NMPC in tracking dynamically infeasible trajectories, at the cost of higher computation time and risk of numerical convergence issues. For both methods, we also quantitatively study the effect of adding an inner loop controller using the incremental nonlinear dynamic inversion method, and the effect of adding an aerodynamic drag model. Our real-world experiments, performed in one of the world’s largest motion capture systems, demonstrate more than 78% tracking error reduction of both NMPC and DFBC, indicating the necessity of using an inner loop controller and aerodynamic drag model for agile trajectory tracking

    DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control

    Full text link
    Precise arbitrary trajectory tracking for quadrotors is challenging due to unknown nonlinear dynamics, trajectory infeasibility, and actuation limits. To tackle these challenges, we present Deep Adaptive Trajectory Tracking (DATT), a learning-based approach that can precisely track arbitrary, potentially infeasible trajectories in the presence of large disturbances in the real world. DATT builds on a novel feedforward-feedback-adaptive control structure trained in simulation using reinforcement learning. When deployed on real hardware, DATT is augmented with a disturbance estimator using L1 adaptive control in closed-loop, without any fine-tuning. DATT significantly outperforms competitive adaptive nonlinear and model predictive controllers for both feasible smooth and infeasible trajectories in unsteady wind fields, including challenging scenarios where baselines completely fail. Moreover, DATT can efficiently run online with an inference time less than 3.2 ms, less than 1/4 of the adaptive nonlinear model predictive control baselin

    Online optimisation-based backstepping control design with application to quadrotor

    Get PDF
    In backstepping implementation, the derivatives of virtual control signals are required at each step. This study provides a novel way to solve this problem by combining online optimisation with backstepping design in an outer and inner loop manner. The properties of differential flatness and the B-spline polynomial function are exploited to transform the optimal control problem into a computationally efficient form. The optimisation process generates not only the optimised states but also their finite order derivatives which can be used to analytically calculate the derivatives of virtual control signal required in backstepping design. In addition, the online optimisation repeatedly performed in a receding horizon fashion can also realise local motion planning for obstacle avoidance. The stability of the receding horizon control scheme is analysed via Lyapunov method which is guaranteed by adding a parametrised terminal condition in the online optimisation. Numerical simulations and flight experiments of a quadrotor unmanned air vehicle are given to demonstrate the effectiveness of the proposed composite control method

    Non-Linear Model Predictive Control with Adaptive Time-Mesh Refinement

    Full text link
    In this paper, we present a novel solution for real-time, Non-Linear Model Predictive Control (NMPC) exploiting a time-mesh refinement strategy. The proposed controller formulates the Optimal Control Problem (OCP) in terms of flat outputs over an adaptive lattice. In common approximated OCP solutions, the number of discretization points composing the lattice represents a critical upper bound for real-time applications. The proposed NMPC-based technique refines the initially uniform time horizon by adding time steps with a sampling criterion that aims to reduce the discretization error. This enables a higher accuracy in the initial part of the receding horizon, which is more relevant to NMPC, while keeping bounded the number of discretization points. By combining this feature with an efficient Least Square formulation, our solver is also extremely time-efficient, generating trajectories of multiple seconds within only a few milliseconds. The performance of the proposed approach has been validated in a high fidelity simulation environment, by using an UAV platform. We also released our implementation as open source C++ code.Comment: In: 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2018
    • …
    corecore