6,583 research outputs found

    CoBe -- Coded Beacons for Localization, Object Tracking, and SLAM Augmentation

    Full text link
    This paper presents a novel beacon light coding protocol, which enables fast and accurate identification of the beacons in an image. The protocol is provably robust to a predefined set of detection and decoding errors, and does not require any synchronization between the beacons themselves and the optical sensor. A detailed guide is then given for developing an optical tracking and localization system, which is based on the suggested protocol and readily available hardware. Such a system operates either as a standalone system for recovering the six degrees of freedom of fast moving objects, or integrated with existing SLAM pipelines providing them with error-free and easily identifiable landmarks. Based on this guide, we implemented a low-cost positional tracking system which can run in real-time on an IoT board. We evaluate our system's accuracy and compare it to other popular methods which utilize the same optical hardware, in experiments where the ground truth is known. A companion video containing multiple real-world experiments demonstrates the accuracy, speed, and applicability of the proposed system in a wide range of environments and real-world tasks. Open source code is provided to encourage further development of low-cost localization systems integrating the suggested technology at its navigation core

    Autonomous Deployment of a Solar Panel Using an Elastic Origami and Distributed Shape Memory Polymer Actuators

    Get PDF
    Deployable mechanical systems such as space solar panels rely on the intricate stowage of passive modules, and sophisticated deployment using a network of motorized actuators. As a result, a significant portion of the stowed mass and volume are occupied by these support systems. An autonomous solar panel array deployed using the inherent material behavior remains elusive. In this work, we develop an autonomous self-deploying solar panel array that is programmed to activate in response to changes in the surrounding temperature. We study an elastic "flasher" origami sheet embedded in a circle of scissor mechanisms, both printed with shape memory polymers. The scissor mechanisms are optimized to provide the maximum expansion ratio while delivering the necessary force for deployment. The origami sheet is also optimized to carry the maximum number of solar panels given space constraints. We show how the folding of the "flasher" origami exhibits a bifurcation behavior resulting in either a cone or disk shape both numerically and in experiments. A folding strategy is devised to avoid the undesired cone shape. The resulting design is entirely 3D printed, achieves an expansion ratio of 1000% in under 40 seconds, and shows excellent agreement with simulation prediction both in the stowed and deployed configurations.Comment: 12 pages, 12 figure

    The Hottest Horizontal-Branch Stars in omega Centauri - Late Hot Flasher vs. Helium Enrichment

    Full text link
    UV observations of some massive globular clusters uncovered a significant population of very hot stars below the hot end of the horizontal branch (HB), the so-called blue hook stars. This feature might be explained either as results of the late hot flasher scenario where stars experience the helium flash while on the white dwarf cooling curve or by the progeny of the helium-enriched sub-population recently postulated to exist in some clusters. Moderately high resolution spectra of stars at the hot end of the blue HB in omega Cen were analysed for atmospheric parameters and abundances using LTE and Non-LTE model atmospheres. In the temperature range 30,000K to 50,000K we find that 35% of our stars are helium-poor (log(n_He/n_H) < -2), 51% have solar helium abundance within a factor of 3 (-1.5 <= log(n_He/n_H) <= -0.5) and 14% are helium-rich (log(n_He/n_H)> -0.4). We also find carbon enrichment in step with helium enrichment, with a maximum carbon enrichment of 3% by mass. At least 14% of the hottest HB stars in omega Cen show helium abundances well above the highest predictions from the helium enrichment scenario (Y = 0.42 corresponding to log(n_He/n_H) ~ -0.74). In addition, the most helium-rich stars show strong carbon enrichment as predicted by the late hot flasher scenario. We conclude that the helium-rich HB stars in omega Cen cannot be explained solely by the helium-enrichment scenario invoked to explain the blue main sequence. (Abridged)Comment: 4 pages, 3 figures, uses aa.cls (enclosed), accepted as A&A Lette

    A Compact High Energy Camera (CHEC) for the Gamma-ray Cherenkov Telescope of the Cherenkov Telescope Array

    Full text link
    The Gamma-ray Cherenkov Telescope (GCT) is one of the Small Size Telescopes (SSTs) proposed for the Cherenkov Telescope Array (CTA) aimed at the 1 TeV to 300 TeV energy range. GCT will be equipped with a Compact High-Energy Camera (CHEC) containing 2048 pixels of physical size about 6×\times6~mm2^2, leading to a field of view of over 8 degrees. Electronics based on custom TARGET ASICs and FPGAs sample incoming signals at a gigasample per second and provide a flexible triggering scheme. Waveforms for every pixel in every event are read out are on demand without loss at over 600 events per second. A GCT prototype in Meudon, Paris saw first Cherenkov light from air showers in late 2015, using the first CHEC prototype, CHEC-M. This contribution presents results from lab and field tests with CHEC-M and the progress made to a robust camera design for deployment within CTA.Comment: All CTA contributions at arXiv:1709.0348

    The first GCT camera for the Cherenkov Telescope Array

    Full text link
    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\deg} angular size, resulting in a field of view of ~9{\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Spectrally balanced chromatic landing approach lighting system

    Get PDF
    Red warning lights delineate the runway approach with additional blue lights juxtaposed with the red lights such that the red lights are chromatically balanced. The red/blue point light sources result in the phenomenon that the red lights appear in front of the blue lights with about one and one-half times the diameter of the blue. To a pilot observing these lights along a glide path, those red lights directly below appear to be nearer than the blue lights. For those lights farther away seen in perspective at oblique angles, the red lights appear to be in a position closer to the pilot and hence appear to be above the corresponding blue lights. This produces a very pronounced three dimensional effect referred to as chromostereopsis which provides valuable visual cues to enable the pilot to perceive his actual position above the ground and the actual distance to the runway

    CHEC: A Compact High Energy Camera for the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array will provide unprecedented sensitivity and angular resolution to gamma rays across orders of magnitude in energy. Above 1 TeV up to around 300 TeV an array of Small-Sized Telescopes (SSTs) will cover several kilometres on the ground. The Compact High-Energy Camera (CHEC) is a proposed option for the camera of the SSTs. CHEC contains 2048 pixels of physical size about 6 mm x 6 mm, leading to a field of view of over 8 degrees. Electronics based on custom ASICs (TARGET) and FPGAs sample incoming signals at a gigasample per second and provide a flexible triggering scheme. Waveforms for every pixel in every event are read out without loss at over 600 events per second. A telescope prototype in Meudon, Paris, saw first Cherenkov light from air showers in late 2015, using the first CHEC prototype. Research and development for CHEC is currently focussed on taking advantage of the latest generation of silicon photomultipliers (SiPMs).Comment: 12 pages, 9 figures, PSD11. arXiv admin note: substantial text overlap with arXiv:1709.0579
    corecore