6,583 research outputs found
CoBe -- Coded Beacons for Localization, Object Tracking, and SLAM Augmentation
This paper presents a novel beacon light coding protocol, which enables fast
and accurate identification of the beacons in an image. The protocol is
provably robust to a predefined set of detection and decoding errors, and does
not require any synchronization between the beacons themselves and the optical
sensor. A detailed guide is then given for developing an optical tracking and
localization system, which is based on the suggested protocol and readily
available hardware. Such a system operates either as a standalone system for
recovering the six degrees of freedom of fast moving objects, or integrated
with existing SLAM pipelines providing them with error-free and easily
identifiable landmarks. Based on this guide, we implemented a low-cost
positional tracking system which can run in real-time on an IoT board. We
evaluate our system's accuracy and compare it to other popular methods which
utilize the same optical hardware, in experiments where the ground truth is
known. A companion video containing multiple real-world experiments
demonstrates the accuracy, speed, and applicability of the proposed system in a
wide range of environments and real-world tasks. Open source code is provided
to encourage further development of low-cost localization systems integrating
the suggested technology at its navigation core
Autonomous Deployment of a Solar Panel Using an Elastic Origami and Distributed Shape Memory Polymer Actuators
Deployable mechanical systems such as space solar panels rely on the
intricate stowage of passive modules, and sophisticated deployment using a
network of motorized actuators. As a result, a significant portion of the
stowed mass and volume are occupied by these support systems. An autonomous
solar panel array deployed using the inherent material behavior remains
elusive. In this work, we develop an autonomous self-deploying solar panel
array that is programmed to activate in response to changes in the surrounding
temperature. We study an elastic "flasher" origami sheet embedded in a circle
of scissor mechanisms, both printed with shape memory polymers. The scissor
mechanisms are optimized to provide the maximum expansion ratio while
delivering the necessary force for deployment. The origami sheet is also
optimized to carry the maximum number of solar panels given space constraints.
We show how the folding of the "flasher" origami exhibits a bifurcation
behavior resulting in either a cone or disk shape both numerically and in
experiments. A folding strategy is devised to avoid the undesired cone shape.
The resulting design is entirely 3D printed, achieves an expansion ratio of
1000% in under 40 seconds, and shows excellent agreement with simulation
prediction both in the stowed and deployed configurations.Comment: 12 pages, 12 figure
The Hottest Horizontal-Branch Stars in omega Centauri - Late Hot Flasher vs. Helium Enrichment
UV observations of some massive globular clusters uncovered a significant
population of very hot stars below the hot end of the horizontal branch (HB),
the so-called blue hook stars. This feature might be explained either as
results of the late hot flasher scenario where stars experience the helium
flash while on the white dwarf cooling curve or by the progeny of the
helium-enriched sub-population recently postulated to exist in some clusters.
Moderately high resolution spectra of stars at the hot end of the blue HB in
omega Cen were analysed for atmospheric parameters and abundances using LTE and
Non-LTE model atmospheres. In the temperature range 30,000K to 50,000K we find
that 35% of our stars are helium-poor (log(n_He/n_H) < -2), 51% have solar
helium abundance within a factor of 3 (-1.5 <= log(n_He/n_H) <= -0.5) and 14%
are helium-rich (log(n_He/n_H)> -0.4). We also find carbon enrichment in step
with helium enrichment, with a maximum carbon enrichment of 3% by mass. At
least 14% of the hottest HB stars in omega Cen show helium abundances well
above the highest predictions from the helium enrichment scenario (Y = 0.42
corresponding to log(n_He/n_H) ~ -0.74). In addition, the most helium-rich
stars show strong carbon enrichment as predicted by the late hot flasher
scenario. We conclude that the helium-rich HB stars in omega Cen cannot be
explained solely by the helium-enrichment scenario invoked to explain the blue
main sequence. (Abridged)Comment: 4 pages, 3 figures, uses aa.cls (enclosed), accepted as A&A Lette
A Compact High Energy Camera (CHEC) for the Gamma-ray Cherenkov Telescope of the Cherenkov Telescope Array
The Gamma-ray Cherenkov Telescope (GCT) is one of the Small Size Telescopes
(SSTs) proposed for the Cherenkov Telescope Array (CTA) aimed at the 1 TeV to
300 TeV energy range. GCT will be equipped with a Compact High-Energy Camera
(CHEC) containing 2048 pixels of physical size about 66~mm, leading
to a field of view of over 8 degrees. Electronics based on custom TARGET ASICs
and FPGAs sample incoming signals at a gigasample per second and provide a
flexible triggering scheme. Waveforms for every pixel in every event are read
out are on demand without loss at over 600 events per second. A GCT prototype
in Meudon, Paris saw first Cherenkov light from air showers in late 2015, using
the first CHEC prototype, CHEC-M. This contribution presents results from lab
and field tests with CHEC-M and the progress made to a robust camera design for
deployment within CTA.Comment: All CTA contributions at arXiv:1709.0348
The first GCT camera for the Cherenkov Telescope Array
The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size
Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT
dual-mirror optical design allows the use of a compact camera of diameter
roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of
~0.2{\deg} angular size, resulting in a field of view of ~9{\deg}. The GCT
camera is designed to record the flashes of Cherenkov light from
electromagnetic cascades, which last only a few tens of nanoseconds. Modules
based on custom ASICs provide the required fast electronics, facilitating
sampling and digitisation as well as first level of triggering. The first GCT
camera prototype is currently being commissioned in the UK. On-telescope tests
are planned later this year. Here we give a detailed description of the camera
prototype and present recent progress with testing and commissioning.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Spectrally balanced chromatic landing approach lighting system
Red warning lights delineate the runway approach with additional blue lights juxtaposed with the red lights such that the red lights are chromatically balanced. The red/blue point light sources result in the phenomenon that the red lights appear in front of the blue lights with about one and one-half times the diameter of the blue. To a pilot observing these lights along a glide path, those red lights directly below appear to be nearer than the blue lights. For those lights farther away seen in perspective at oblique angles, the red lights appear to be in a position closer to the pilot and hence appear to be above the corresponding blue lights. This produces a very pronounced three dimensional effect referred to as chromostereopsis which provides valuable visual cues to enable the pilot to perceive his actual position above the ground and the actual distance to the runway
CHEC: A Compact High Energy Camera for the Cherenkov Telescope Array
The Cherenkov Telescope Array will provide unprecedented sensitivity and
angular resolution to gamma rays across orders of magnitude in energy. Above 1
TeV up to around 300 TeV an array of Small-Sized Telescopes (SSTs) will cover
several kilometres on the ground. The Compact High-Energy Camera (CHEC) is a
proposed option for the camera of the SSTs. CHEC contains 2048 pixels of
physical size about 6 mm x 6 mm, leading to a field of view of over 8 degrees.
Electronics based on custom ASICs (TARGET) and FPGAs sample incoming signals at
a gigasample per second and provide a flexible triggering scheme. Waveforms for
every pixel in every event are read out without loss at over 600 events per
second. A telescope prototype in Meudon, Paris, saw first Cherenkov light from
air showers in late 2015, using the first CHEC prototype. Research and
development for CHEC is currently focussed on taking advantage of the latest
generation of silicon photomultipliers (SiPMs).Comment: 12 pages, 9 figures, PSD11. arXiv admin note: substantial text
overlap with arXiv:1709.0579
- …
