5 research outputs found

    Flash Photography for Data-Driven Hidden Scene Recovery

    Full text link
    Vehicles, search and rescue personnel, and endoscopes use flash lights to locate, identify, and view objects in their surroundings. Here we show the first steps of how all these tasks can be done around corners with consumer cameras. Recent techniques for NLOS imaging using consumer cameras have not been able to both localize and identify the hidden object. We introduce a method that couples traditional geometric understanding and data-driven techniques. To avoid the limitation of large dataset gathering, we train the data-driven models on rendered samples to computationally recover the hidden scene on real data. The method has three independent operating modes: 1) a regression output to localize a hidden object in 2D, 2) an identification output to identify the object type or pose, and 3) a generative network to reconstruct the hidden scene from a new viewpoint. The method is able to localize 12cm wide hidden objects in 2D with 1.7cm accuracy. The method also identifies the hidden object class with 87.7% accuracy (compared to 33.3% random accuracy). This paper also provides an analysis on the distribution of information that encodes the occluded object in the accessible scene. We show that, unlike previously thought, the area that extends beyond the corner is essential for accurate object localization and identification

    ExpertMatcher: Automating ML Model Selection for Clients using Hidden Representations

    Full text link
    Recently, there has been the development of Split Learning, a framework for distributed computation where model components are split between the client and server (Vepakomma et al., 2018b). As Split Learning scales to include many different model components, there needs to be a method of matching client-side model components with the best server-side model components. A solution to this problem was introduced in the ExpertMatcher (Sharma et al., 2019) framework, which uses autoencoders to match raw data to models. In this work, we propose an extension of ExpertMatcher, where matching can be performed without the need to share the client's raw data representation. The technique is applicable to situations where there are local clients and centralized expert ML models, but the sharing of raw data is constrained.Comment: In NeurIPS Workshop on Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy, 201

    Deep Shape from Polarization

    Full text link
    This paper makes a first attempt to bring the Shape from Polarization (SfP) problem to the realm of deep learning. The previous state-of-the-art methods for SfP have been purely physics-based. We see value in these principled models, and blend these physical models as priors into a neural network architecture. This proposed approach achieves results that exceed the previous state-of-the-art on a challenging dataset we introduce. This dataset consists of polarization images taken over a range of object textures, paints, and lighting conditions. We report that our proposed method achieves the lowest test error on each tested condition in our dataset, showing the value of blending data-driven and physics-driven approaches

    Adaptive Lighting for Data-Driven Non-Line-of-Sight 3D Localization and Object Identification

    Full text link
    Non-line-of-sight (NLOS) imaging of objects not visible to either the camera or illumination source is a challenging task with vital applications including surveillance and robotics. Recent NLOS reconstruction advances have been achieved using time-resolved measurements which requires expensive and specialized detectors and laser sources. In contrast, we propose a data-driven approach for NLOS 3D localization and object identification requiring only a conventional camera and projector. To generalize to complex line-of-sight (LOS) scenes with non-planar surfaces and occlusions, we introduce an adaptive lighting algorithm. This algorithm, based on radiosity, identifies and illuminates scene patches in the LOS which most contribute to the NLOS light paths, and can factor in system power constraints. We achieve an average identification of 87.1% object identification for four classes of objects, and average localization of the NLOS object's centroid with a mean-squared error (MSE) of 1.97 cm in the occluded region for real data taken from a hardware prototype. These results demonstrate the advantage of combining the physics of light transport with active illumination for data-driven NLOS imaging

    Recent Advances in Imaging Around Corners

    Full text link
    Seeing around corners, also known as non-line-of-sight (NLOS) imaging is a computational method to resolve or recover objects hidden around corners. Recent advances in imaging around corners have gained significant interest. This paper reviews different types of existing NLOS imaging techniques and discusses the challenges that need to be addressed, especially for their applications outside of a constrained laboratory environment. Our goal is to introduce this topic to broader research communities as well as provide insights that would lead to further developments in this research area
    corecore