3 research outputs found

    Fixpoint Games on Continuous Lattices

    Get PDF
    Many analysis and verifications tasks, such as static program analyses and model-checking for temporal logics reduce to the solution of systems of equations over suitable lattices. Inspired by recent work on lattice-theoretic progress measures, we develop a game-theoretical approach to the solution of systems of monotone equations over lattices, where for each single equation either the least or greatest solution is taken. A simple parity game, referred to as fixpoint game, is defined that provides a correct and complete characterisation of the solution of equation systems over continuous lattices, a quite general class of lattices widely used in semantics. For powerset lattices the fixpoint game is intimately connected with classical parity games for μ\mu-calculus model-checking, whose solution can exploit as a key tool Jurdzi\'nski's small progress measures. We show how the notion of progress measure can be naturally generalised to fixpoint games over continuous lattices and we prove the existence of small progress measures. Our results lead to a constructive formulation of progress measures as (least) fixpoints. We refine this characterisation by introducing the notion of selection that allows one to constrain the plays in the parity game, enabling an effective (and possibly efficient) solution of the game, and thus of the associated verification problem. We also propose a logic for specifying the moves of the existential player that can be used to systematically derive simplified equations for efficiently computing progress measures. We discuss potential applications to the model-checking of latticed μ\mu-calculi and to the solution of fixpoint equations systems over the reals

    A Universal Attractor Decomposition Algorithm for Parity Games

    Full text link
    An attractor decomposition meta-algorithm for solving parity games is given that generalizes the classic McNaughton-Zielonka algorithm and its recent quasi-polynomial variants due to Parys (2019), and to Lehtinen, Schewe, and Wojtczak (2019). The central concepts studied and exploited are attractor decompositions of dominia in parity games and the ordered trees that describe the inductive structure of attractor decompositions. The main technical results include the embeddable decomposition theorem and the dominion separation theorem that together help establish a precise structural condition for the correctness of the universal algorithm: it suffices that the two ordered trees given to the algorithm as inputs embed the trees of some attractor decompositions of the largest dominia for each of the two players, respectively. The universal algorithm yields McNaughton-Zielonka, Parys's, and Lehtinen-Schewe-Wojtczak algorithms as special cases when suitable universal trees are given to it as inputs. The main technical results provide a unified proof of correctness and deep structural insights into those algorithms. A symbolic implementation of the universal algorithm is also given that improves the symbolic space complexity of solving parity games in quasi-polynomial time from O(dlgn)O(d \lg n)---achieved by Chatterjee, Dvo\v{r}\'{a}k, Henzinger, and Svozil (2018)---down to O(lgd)O(\lg d), where nn is the number of vertices and dd is the number of distinct priorities in a parity game. This not only exponentially improves the dependence on dd, but it also entirely removes the dependence on nn
    corecore