6 research outputs found

    Large-Scale Analysis of Framework-Specific Exceptions in Android Apps

    Full text link
    Mobile apps have become ubiquitous. For app developers, it is a key priority to ensure their apps' correctness and reliability. However, many apps still suffer from occasional to frequent crashes, weakening their competitive edge. Large-scale, deep analyses of the characteristics of real-world app crashes can provide useful insights to guide developers, or help improve testing and analysis tools. However, such studies do not exist -- this paper fills this gap. Over a four-month long effort, we have collected 16,245 unique exception traces from 2,486 open-source Android apps, and observed that framework-specific exceptions account for the majority of these crashes. We then extensively investigated the 8,243 framework-specific exceptions (which took six person-months): (1) identifying their characteristics (e.g., manifestation locations, common fault categories), (2) evaluating their manifestation via state-of-the-art bug detection techniques, and (3) reviewing their fixes. Besides the insights they provide, these findings motivate and enable follow-up research on mobile apps, such as bug detection, fault localization and patch generation. In addition, to demonstrate the utility of our findings, we have optimized Stoat, a dynamic testing tool, and implemented ExLocator, an exception localization tool, for Android apps. Stoat is able to quickly uncover three previously-unknown, confirmed/fixed crashes in Gmail and Google+; ExLocator is capable of precisely locating the root causes of identified exceptions in real-world apps. Our substantial dataset is made publicly available to share with and benefit the community.Comment: ICSE'18: the 40th International Conference on Software Engineerin

    Evaluating Pre-trained Language Models for Repairing API Misuses

    Full text link
    API misuses often lead to software bugs, crashes, and vulnerabilities. While several API misuse detectors have been proposed, there are no automatic repair tools specifically designed for this purpose. In a recent study, test-suite-based automatic program repair (APR) tools were found to be ineffective in repairing API misuses. Still, since the study focused on non-learning-aided APR tools, it remains unknown whether learning-aided APR tools are capable of fixing API misuses. In recent years, pre-trained language models (PLMs) have succeeded greatly in many natural language processing tasks. There is a rising interest in applying PLMs to APR. However, there has not been any study that investigates the effectiveness of PLMs in repairing API misuse. To fill this gap, we conduct a comprehensive empirical study on 11 learning-aided APR tools, which include 9 of the state-of-the-art general-purpose PLMs and two APR tools. We evaluate these models with an API-misuse repair dataset, consisting of two variants. Our results show that PLMs perform better than the studied APR tools in repairing API misuses. Among the 9 pre-trained models tested, CodeT5 is the best performer in the exact match. We also offer insights and potential exploration directions for future research.Comment: Under review by TOSE

    Evaluating Automatic Program Repair Capabilities to Repair API Misuses

    Get PDF
    API misuses are well-known causes of software crashes and security vulnerabilities. However, their detection and repair is challenging given that the correct usages of (third-party) APIs might be obscure to the developers of client programs. This paper presents the first empirical study to assess the ability of existing automated bug repair tools to repair API misuses, which is a class of bugs previously unexplored. Our study examines and compares 14 Java test-suite-based repair tools (11 proposed before 2018, and three afterwards) on a manually curated benchmark (APIREPBENCH) consisting of 101 API misuses. We develop an extensible execution framework (APIARTY) to automatically execute multiple repair tools. Our results show that the repair tools are able to generate patches for 28% of the API misuses considered. While the 11 less recent tools are generally fast (the median execution time of the repair attempts is 3.87 minutes and the mean execution time is 30.79 minutes), the three most recent are less efficient (i.e., 98% slower) than their predecessors. The tools generate patches for API misuses that mostly belong to the categories of missing null check, missing value, missing exception, and missing call. Most of the patches generated by all tools are plausible (65%), but only few of these patches are semantically correct to human patches (25%). Our findings suggest that the design of future repair tools should support the localisation of complex bugs, including different categories of API misuses, handling of timeout issues, and ability to configure large software projects. Both APIREPBENCH and APIARTY have been made publicly available for other researchers to evaluate the capabilities of repair tools on detecting and fixing API misuses
    corecore