3 research outputs found

    Predefined-time synchronization of 5D Hindmarsh–Rose neuron networks via backstepping design and application in secure communication

    Get PDF
    In this paper, the fast synchronization problem of 5D Hindmarsh–Rose neuron networks is studied. Firstly, the global predefined-time stability of a class of nonlinear dynamical systems is investigated under the complete beta function. Then an active controller via backstepping design is proposed to achieve predefined-time synchronization of two 5D Hindmarsh–Rose neuron networks in which the synchronization time of each state variable of the master-slave 5D Hindmarsh–Rose neuron networks is different and can be defined in advance, respectively. To show the applicability of the obtained theoretical results, the designed predefined-time backstepping controller is applied to secure communication to realize asynchronous communication of multiple different messages. Three numerical simulations are provided to validate the theoretical results

    Fixed-time control of delayed neural networks with impulsive perturbations

    Get PDF
    This paper is concerned with the fixed-time stability of delayed neural networks with impulsive perturbations. By means of inequality analysis technique and Lyapunov function method, some novel fixed-time stability criteria for the addressed neural networks are derived in terms of linear matrix inequalities (LMIs). The settling time can be estimated without depending on any initial conditions but only on the designed controllers. In addition, two different controllers are designed for the impulsive delayed neural networks. Moreover, each controller involves three parts, in which each part has different role in the stabilization of the addressed neural networks. Finally, two numerical examples are provided to illustrate the effectiveness of the theoretical analysis
    corecore