13,329 research outputs found

    Renormalized field theory of collapsing directed randomly branched polymers

    Get PDF
    We present a dynamical field theory for directed randomly branched polymers and in particular their collapse transition. We develop a phenomenological model in the form of a stochastic response functional that allows us to address several interesting problems such as the scaling behavior of the swollen phase and the collapse transition. For the swollen phase, we find that by choosing model parameters appropriately, our stochastic functional reduces to the one describing the relaxation dynamics near the Yang-Lee singularity edge. This corroborates that the scaling behavior of swollen branched polymers is governed by the Yang-Lee universality class as has been known for a long time. The main focus of our paper lies on the collapse transition of directed branched polymers. We show to arbitrary order in renormalized perturbation theory with ε\varepsilon-expansion that this transition belongs to the same universality class as directed percolation.Comment: 18 pages, 7 figure

    A Formalism for Scattering of Complex Composite Structures. 1 Applications to Branched Structures of Asymmetric Sub-Units

    Get PDF
    We present a formalism for the scattering of an arbitrary linear or acyclic branched structure build by joining mutually non-interacting arbitrary functional sub-units. The formalism consists of three equations expressing the structural scattering in terms of three equations expressing the sub-unit scattering. The structural scattering expressions allows a composite structures to be used as sub-units within the formalism itself. This allows the scattering expressions for complex hierarchical structures to be derived with great ease. The formalism is furthermore generic in the sense that the scattering due to structural connectivity is completely decoupled from internal structure of the sub-units. This allows sub-units to be replaced by more complex structures. We illustrate the physical interpretation of the formalism diagrammatically. By applying a self-consistency requirement we derive the pair distributions of an ideal flexible polymer sub-unit. We illustrate the formalism by deriving generic scattering expressions for branched structures such as stars, pom-poms, bottle-brushes, and dendrimers build out of asymmetric two-functional sub-units.Comment: Complete rewrite generalizing the formalism to arbitrary functional sub-units and including a new Feynmann like diagrammatic interpretatio

    Disorder effects on the static scattering function of star branched polymers

    Full text link
    We present an analysis of the impact of structural disorder on the static scattering function of f-armed star branched polymers in d dimensions. To this end, we consider the model of a star polymer immersed in a good solvent in the presence of structural defects, correlated at large distances r according to a power law \sim r^{-a}. In particular, we are interested in the ratio g(f) of the radii of gyration of star and linear polymers of the same molecular weight, which is a universal experimentally measurable quantity. We apply a direct polymer renormalization approach and evaluate the results within the double \varepsilon=4-d, \delta=4-a-expansion. We find an increase of g(f) with an increasing \delta. Therefore, an increase of disorder correlations leads to an increase of the size measure of a star relative to linear polymers of the same molecular weight.Comment: 17 pages, 7 figure

    A thermodynamically reversible generalization of Diffusion Limited Aggregation

    Full text link
    We introduce a lattice gas model of cluster growth via the diffusive aggregation of particles in a closed system obeying a local, deterministic, microscopically reversible dynamics. This model roughly corresponds to placing the irreversible Diffusion Limited Aggregation model (DLA) in contact with a heat bath. Particles release latent heat when aggregating, while singly connected cluster members can absorb heat and evaporate. The heat bath is initially empty, hence we observe the flow of entropy from the aggregating gas of particles into the heat bath, which is being populated by diffusing heat tokens. Before the population of the heat bath stabilizes, the cluster morphology (quantified by the fractal dimension) is similar to a standard DLA cluster. The cluster then gradually anneals, becoming more tenuous, until reaching configurational equilibrium when the cluster morphology resembles a quenched branched random polymer. As the microscopic dynamics is invertible, we can reverse the evolution, observe the inverse flow of heat and entropy, and recover the initial condition. This simple system provides an explicit example of how macroscopic dissipation and self-organization can result from an underlying microscopically reversible dynamics.Comment: 13 pages, 8 figures, 1 table. Submitted to Phys. Rev.

    Lorentzian and Euclidean Quantum Gravity - Analytical and Numerical Results

    Full text link
    We review some recent attempts to extract information about the nature of quantum gravity, with and without matter, by quantum field theoretical methods. More specifically, we work within a covariant lattice approach where the individual space-time geometries are constructed from fundamental simplicial building blocks, and the path integral over geometries is approximated by summing over a class of piece-wise linear geometries. This method of ``dynamical triangulations'' is very powerful in 2d, where the regularized theory can be solved explicitly, and gives us more insights into the quantum nature of 2d space-time than continuum methods are presently able to provide. It also allows us to establish an explicit relation between the Lorentzian- and Euclidean-signature quantum theories. Analogous regularized gravitational models can be set up in higher dimensions. Some analytic tools exist to study their state sums, but, unlike in 2d, no complete analytic solutions have yet been constructed. However, a great advantage of our approach is the fact that it is well-suited for numerical simulations. In the second part of this review we describe the relevant Monte Carlo techniques, as well as some of the physical results that have been obtained from the simulations of Euclidean gravity. We also explain why the Lorentzian version of dynamical triangulations is a promising candidate for a non-perturbative theory of quantum gravity.Comment: 69 pages, 16 figures, references adde

    Off-lattice Monte Carlo Simulation of Supramolecular Polymer Architectures

    Get PDF
    We introduce an efficient, scalable Monte Carlo algorithm to simulate cross-linked architectures of freely-jointed and discrete worm-like chains. Bond movement is based on the discrete tractrix construction, which effects conformational changes that exactly preserve fixed-length constraints of all bonds. The algorithm reproduces known end-to-end distance distributions for simple, analytically tractable systems of cross-linked stiff and freely jointed polymers flawlessly, and is used to determine the effective persistence length of short bundles of semi-flexible worm-like chains, cross-linked to each other. It reveals a possible regulatory mechanism in bundled networks: the effective persistence of bundles is controlled by the linker density.Comment: 4 pages, 4 figure
    corecore