37,603 research outputs found
Minimizing movement: Fixed-parameter tractability
We study an extensive class of movement minimization problems that arise from many practical scenarios but so far have little theoretical study. In general, these problems involve planning the coordinated motion of a collection of agents (representing robots, people, map labels, network messages, etc.) to achieve a global property in the network while minimizing the maximum or average movement (expended energy). The only previous theoretical results about this class of problems are about approximation and are mainly negative: many movement problems of interest have polynomial inapproximability. Given that the number of mobile agents is typically much smaller than the complexity of the environment, we turn to fixed-parameter tractability. We characterize the boundary between tractable and intractable movement problems in a very general setup: it turns out the complexity of the problem fundamentally depends on the treewidth of the minimal configurations. Thus, the complexity of a particular problem can be determined by answering a purely combinatorial question. Using our general tools, we determine the complexity of several concrete problems and fortunately show that many movement problems of interest can be solved efficiently.</jats:p
Reduction Techniques for Graph Isomorphism in the Context of Width Parameters
We study the parameterized complexity of the graph isomorphism problem when
parameterized by width parameters related to tree decompositions. We apply the
following technique to obtain fixed-parameter tractability for such parameters.
We first compute an isomorphism invariant set of potential bags for a
decomposition and then apply a restricted version of the Weisfeiler-Lehman
algorithm to solve isomorphism. With this we show fixed-parameter tractability
for several parameters and provide a unified explanation for various
isomorphism results concerned with parameters related to tree decompositions.
As a possibly first step towards intractability results for parameterized graph
isomorphism we develop an fpt Turing-reduction from strong tree width to the a
priori unrelated parameter maximum degree.Comment: 23 pages, 4 figure
Fixed parameter tractability of crossing minimization of almost-trees
We investigate exact crossing minimization for graphs that differ from trees
by a small number of additional edges, for several variants of the crossing
minimization problem. In particular, we provide fixed parameter tractable
algorithms for the 1-page book crossing number, the 2-page book crossing
number, and the minimum number of crossed edges in 1-page and 2-page book
drawings.Comment: Graph Drawing 201
Fixed-parameter tractability, definability, and model checking
In this article, we study parameterized complexity theory from the
perspective of logic, or more specifically, descriptive complexity theory.
We propose to consider parameterized model-checking problems for various
fragments of first-order logic as generic parameterized problems and show how
this approach can be useful in studying both fixed-parameter tractability and
intractability. For example, we establish the equivalence between the
model-checking for existential first-order logic, the homomorphism problem for
relational structures, and the substructure isomorphism problem. Our main
tractability result shows that model-checking for first-order formulas is
fixed-parameter tractable when restricted to a class of input structures with
an excluded minor. On the intractability side, for every t >= 0 we prove an
equivalence between model-checking for first-order formulas with t quantifier
alternations and the parameterized halting problem for alternating Turing
machines with t alternations. We discuss the close connection between this
alternation hierarchy and Downey and Fellows' W-hierarchy.
On a more abstract level, we consider two forms of definability, called Fagin
definability and slicewise definability, that are appropriate for describing
parameterized problems. We give a characterization of the class FPT of all
fixed-parameter tractable problems in terms of slicewise definability in finite
variable least fixed-point logic, which is reminiscent of the Immerman-Vardi
Theorem characterizing the class PTIME in terms of definability in least
fixed-point logic.Comment: To appear in SIAM Journal on Computin
Parameterized Edge Hamiltonicity
We study the parameterized complexity of the classical Edge Hamiltonian Path
problem and give several fixed-parameter tractability results. First, we settle
an open question of Demaine et al. by showing that Edge Hamiltonian Path is FPT
parameterized by vertex cover, and that it also admits a cubic kernel. We then
show fixed-parameter tractability even for a generalization of the problem to
arbitrary hypergraphs, parameterized by the size of a (supplied) hitting set.
We also consider the problem parameterized by treewidth or clique-width.
Surprisingly, we show that the problem is FPT for both of these standard
parameters, in contrast to its vertex version, which is W-hard for
clique-width. Our technique, which may be of independent interest, relies on a
structural characterization of clique-width in terms of treewidth and complete
bipartite subgraphs due to Gurski and Wanke
- …
