2,843 research outputs found

    Higher-Order Triangular-Distance Delaunay Graphs: Graph-Theoretical Properties

    Full text link
    We consider an extension of the triangular-distance Delaunay graphs (TD-Delaunay) on a set PP of points in the plane. In TD-Delaunay, the convex distance is defined by a fixed-oriented equilateral triangle \triangledown, and there is an edge between two points in PP if and only if there is an empty homothet of \triangledown having the two points on its boundary. We consider higher-order triangular-distance Delaunay graphs, namely kk-TD, which contains an edge between two points if the interior of the homothet of \triangledown having the two points on its boundary contains at most kk points of PP. We consider the connectivity, Hamiltonicity and perfect-matching admissibility of kk-TD. Finally we consider the problem of blocking the edges of kk-TD.Comment: 20 page

    Fully Packed Loops in a triangle: matchings, paths and puzzles

    Full text link
    Fully Packed Loop configurations in a triangle (TFPLs) first appeared in the study of ordinary Fully Packed Loop configurations (FPLs) on the square grid where they were used to show that the number of FPLs with a given link pattern that has m nested arches is a polynomial function in m. It soon turned out that TFPLs possess a number of other nice properties. For instance, they can be seen as a generalized model of Littlewood-Richardson coefficients. We start our article by introducing oriented versions of TFPLs; their main advantage in comparison with ordinary TFPLs is that they involve only local constraints. Three main contributions are provided. Firstly, we show that the number of ordinary TFPLs can be extracted from a weighted enumeration of oriented TFPLs and thus it suffices to consider the latter. Secondly, we decompose oriented TFPLs into two matchings and use a classical bijection to obtain two families of nonintersecting lattice paths (path tangles). This point of view turns out to be extremely useful for giving easy proofs of previously known conditions on the boundary of TFPLs necessary for them to exist. One example is the inequality d(u)+d(v)<=d(w) where u,v,w are 01-words that encode the boundary conditions of ordinary TFPLs and d(u) is the number of cells in the Ferrers diagram associated with u. In the third part we consider TFPLs with d(w)- d(u)-d(v)=0,1; in the first case their numbers are given by Littlewood-Richardson coefficients, but also in the second case we provide formulas that are in terms of Littlewood-Richardson coefficients. The proofs of these formulas are of a purely combinatorial nature.Comment: 40 pages, 31 figure
    corecore