970 research outputs found

    Fixed point semantics and partial recursion in Coq

    Get PDF
    International audienceWe propose to use the Knaster-Tarski least fixed point theorem as a basis to define recursive functions in the Calculus of Inductive Constructions. This widens the class of functions that can be modelled in type-theory based theorem proving tools to potentially non-terminating functions. This is only possible if we extend the logical framework by adding some axioms of classical logic. We claim that the extended framework makes it possible to reason about terminating or non-terminating computations and we show that extraction can also be extended to handle the new functions

    Coinductive Formal Reasoning in Exact Real Arithmetic

    Full text link
    In this article we present a method for formally proving the correctness of the lazy algorithms for computing homographic and quadratic transformations -- of which field operations are special cases-- on a representation of real numbers by coinductive streams. The algorithms work on coinductive stream of M\"{o}bius maps and form the basis of the Edalat--Potts exact real arithmetic. We use the machinery of the Coq proof assistant for the coinductive types to present the formalisation. The formalised algorithms are only partially productive, i.e., they do not output provably infinite streams for all possible inputs. We show how to deal with this partiality in the presence of syntactic restrictions posed by the constructive type theory of Coq. Furthermore we show that the type theoretic techniques that we develop are compatible with the semantics of the algorithms as continuous maps on real numbers. The resulting Coq formalisation is available for public download.Comment: 40 page

    General Recursion via Coinductive Types

    Full text link
    A fertile field of research in theoretical computer science investigates the representation of general recursive functions in intensional type theories. Among the most successful approaches are: the use of wellfounded relations, implementation of operational semantics, formalization of domain theory, and inductive definition of domain predicates. Here, a different solution is proposed: exploiting coinductive types to model infinite computations. To every type A we associate a type of partial elements Partial(A), coinductively generated by two constructors: the first, return(a) just returns an element a:A; the second, step(x), adds a computation step to a recursive element x:Partial(A). We show how this simple device is sufficient to formalize all recursive functions between two given types. It allows the definition of fixed points of finitary, that is, continuous, operators. We will compare this approach to different ones from the literature. Finally, we mention that the formalization, with appropriate structural maps, defines a strong monad.Comment: 28 page

    Total Haskell is Reasonable Coq

    Full text link
    We would like to use the Coq proof assistant to mechanically verify properties of Haskell programs. To that end, we present a tool, named hs-to-coq, that translates total Haskell programs into Coq programs via a shallow embedding. We apply our tool in three case studies -- a lawful Monad instance, "Hutton's razor", and an existing data structure library -- and prove their correctness. These examples show that this approach is viable: both that hs-to-coq applies to existing Haskell code, and that the output it produces is amenable to verification.Comment: 13 pages plus references. Published at CPP'18, In Proceedings of 7th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP'18). ACM, New York, NY, USA, 201

    Theorem proving support in programming language semantics

    Get PDF
    We describe several views of the semantics of a simple programming language as formal documents in the calculus of inductive constructions that can be verified by the Coq proof system. Covered aspects are natural semantics, denotational semantics, axiomatic semantics, and abstract interpretation. Descriptions as recursive functions are also provided whenever suitable, thus yielding a a verification condition generator and a static analyser that can be run inside the theorem prover for use in reflective proofs. Extraction of an interpreter from the denotational semantics is also described. All different aspects are formally proved sound with respect to the natural semantics specification.Comment: Propos\'e pour publication dans l'ouvrage \`a la m\'emoire de Gilles Kah

    Extending the Calculus of Constructions with Tarski's fix-point theorem

    Get PDF
    We propose to use Tarski's least fixpoint theorem as a basis to define recursive functions in the calculus of inductive constructions. This widens the class of functions that can be modeled in type-theory based theorem proving tool to potentially non-terminating functions. This is only possible if we extend the logical framework by adding the axioms that correspond to classical logic. We claim that the extended framework makes it possible to reason about terminating and non-terminating computations and we show that common facilities of the calculus of inductive construction, like program extraction can be extended to also handle the new functions

    Implementing and reasoning about hash-consed data structures in Coq

    Get PDF
    We report on four different approaches to implementing hash-consing in Coq programs. The use cases include execution inside Coq, or execution of the extracted OCaml code. We explore the different trade-offs between faithful use of pristine extracted code, and code that is fine-tuned to make use of OCaml programming constructs not available in Coq. We discuss the possible consequences in terms of performances and guarantees. We use the running example of binary decision diagrams and then demonstrate the generality of our solutions by applying them to other examples of hash-consed data structures

    Recursive Definitions of Monadic Functions

    Full text link
    Using standard domain-theoretic fixed-points, we present an approach for defining recursive functions that are formulated in monadic style. The method works both in the simple option monad and the state-exception monad of Isabelle/HOL's imperative programming extension, which results in a convenient definition principle for imperative programs, which were previously hard to define. For such monadic functions, the recursion equation can always be derived without preconditions, even if the function is partial. The construction is easy to automate, and convenient induction principles can be derived automatically.Comment: In Proceedings PAR 2010, arXiv:1012.455

    TRX: A Formally Verified Parser Interpreter

    Full text link
    Parsing is an important problem in computer science and yet surprisingly little attention has been devoted to its formal verification. In this paper, we present TRX: a parser interpreter formally developed in the proof assistant Coq, capable of producing formally correct parsers. We are using parsing expression grammars (PEGs), a formalism essentially representing recursive descent parsing, which we consider an attractive alternative to context-free grammars (CFGs). From this formalization we can extract a parser for an arbitrary PEG grammar with the warranty of total correctness, i.e., the resulting parser is terminating and correct with respect to its grammar and the semantics of PEGs; both properties formally proven in Coq.Comment: 26 pages, LMC
    • …
    corecore