7,331 research outputs found

    Implementation of JPEG compression and motion estimation on FPGA hardware

    Full text link
    A hardware implementation of JPEG allows for real-time compression in data intensivve applications, such as high speed scanning, medical imaging and satellite image transmission. Implementation options include dedicated DSP or media processors, FPGA boards, and ASICs. Factors that affect the choice of platform selection involve cost, speed, memory, size, power consumption, and case of reconfiguration. The proposed hardware solution is based on a Very high speed integrated circuit Hardware Description Language (VHDL) implememtation of the codec with prefered realization using an FPGA board due to speed, cost and flexibility factors; The VHDL language is commonly used to model hardware impletations from a top down perspective. The VHDL code may be simulated to correct mistakes and subsequently synthesized into hardware using a synthesis tool, such as the xilinx ise suite. The same VHDL code may be synthesized into a number of sifferent hardware architetcures based on constraints given. For example speed was the major constraint when synthesizing the pipeline of jpeg encoding and decoding, while chip area and power consumption were primary constraints when synthesizing the on-die memory because of large area. Thus, there is a trade off between area and speed in logic synthesis

    Efficient and automatic methods for flexible regression on spatiotemporal data, with applications to groundwater monitoring

    Get PDF
    Fitting statistical models to spatiotemporal data requires finding the right balance between imposing smoothness and following the data. In the context of P-splines, we propose a Bayesian framework for choosing the smoothing parameter which allows the construction of fully-automatic data-driven methods for fitting flexible models to spatiotemporal data. An implementation, which is highly computationally efficient and which exploits the sparsity of the design and penalty matrices, is proposed. The findings are illustrated using a simulation study and two examples, all concerned with the modelling of contaminants in groundwater. This suggests that the proposed strategy is more stable that competing methods based on the use of criteria such as GCV and AIC

    Neural Fields for Interactive Visualization of Statistical Dependencies in 3D Simulation Ensembles

    Full text link
    We present the first neural network that has learned to compactly represent and can efficiently reconstruct the statistical dependencies between the values of physical variables at different spatial locations in large 3D simulation ensembles. Going beyond linear dependencies, we consider mutual information as a measure of non-linear dependence. We demonstrate learning and reconstruction with a large weather forecast ensemble comprising 1000 members, each storing multiple physical variables at a 250 x 352 x 20 simulation grid. By circumventing compute-intensive statistical estimators at runtime, we demonstrate significantly reduced memory and computation requirements for reconstructing the major dependence structures. This enables embedding the estimator into a GPU-accelerated direct volume renderer and interactively visualizing all mutual dependencies for a selected domain point
    • …
    corecore