223,286 research outputs found
Microscopic Description of Nuclear Fission Dynamics
We discuss possible avenues to study fission dynamics starting from a
time-dependent mean-field approach. Previous attempts to study fission dynamics
using the time-dependent Hartree-Fock (TDHF) theory are analyzed. We argue that
different initial conditions may be needed to describe fission dynamics
depending on the specifics of the fission phenomenon and propose various
approaches towards this goal. In particular, we provide preliminary
calculations for studying fission following a heavy-ion reaction using TDHF
with a density contraint. Regarding prompt muon-induced fission, we also
suggest a new approach for combining the time-evolution of the muonic wave
function with a microscopic treatment of fission dynamics via TDHF
Characteristics of Coulomb fission
Within an extended semiquantal theory we perform large-sized coupled-channel calculations involving 260 collective levels for Coulomb fission of 238U. Differential Coulomb fission cross sections are studied as a function of bombarding energy and impact parameter for several projectiles. In the Xe + U case, total cross sections are also given. We find a strong dependence on projectile charge number, PCF(180°)∼(Zp)6 in the region 50≤Zp≤92 for a fixed ratio E/ECoul, which might be helpful to separate Coulomb fission experimentally from sequential fission following transfer reactions. Since the cross sections are sensitive to the moment of inertia ⊖ at the saddle point, Coulomb fission can serve as a tool to investigate the dependence of ⊖ on elongation. The fragment angular distribution exhibits deviations from 1/sinθf which are pronounced at low incident energies. Our theory indicates that the recently measured Xe + U fission cross sections contain a major fraction of Coulomb-induced fission at E≤0.85 ECoul. NUCLEAR REACTIONS, FISSION Calculated Coulomb fission cross sections σ(Ep,θp) for 54Xe, 67Ho, 82Pb, 92U→92238U, fragment angular distribution, fission energy spectrum, mean spin value 〈Jf〉
Microscopic Description of Nuclear Fission Dynamics
We discuss possible avenues to study fission dynamics starting from a
time-dependent mean-field approach. Previous attempts to study fission dynamics
using the time-dependent Hartree-Fock (TDHF) theory are analyzed. We argue that
different initial conditions may be needed to describe fission dynamics
depending on the specifics of the fission phenomenon and propose various
approaches towards this goal. In particular, we provide preliminary
calculations for studying fission following a heavy-ion reaction using TDHF
with a density contraint. Regarding prompt muon-induced fission, we also
suggest a new approach for combining the time-evolution of the muonic wave
function with a microscopic treatment of fission dynamics via TDHF
Quest for consistent modelling of statistical decay of the compound nucleus
A statistical model description of heavy ion induced fusion-fission reactions
is presented where shell effects, collective enhancement of level density,
tilting away effect of compound nuclear spin and dissipation are included. It
is shown that the inclusion of all these effects provides a consistent picture
of fission where fission hindrance is required to explain the experimental
values of both pre-scission neutron multiplicities and evaporation residue
cross-sections in contrast to some of the earlier works where a fission
hindrance is required for pre-scission neutrons but a fission enhancement for
evaporation residue cross-sections.Comment: 14 pages, 2 figure
- …
