268,038 research outputs found
Counterfactual Causality from First Principles?
In this position paper we discuss three main shortcomings of existing
approaches to counterfactual causality from the computer science perspective,
and sketch lines of work to try and overcome these issues: (1) causality
definitions should be driven by a set of precisely specified requirements
rather than specific examples; (2) causality frameworks should support system
dynamics; (3) causality analysis should have a well-understood behavior in
presence of abstraction.Comment: In Proceedings CREST 2017, arXiv:1710.0277
Semiclassical Universe from First Principles
Causal Dynamical Triangulations in four dimensions provide a
background-independent definition of the sum over space-time geometries in
nonperturbative quantum gravity. We show that the macroscopic four-dimensional
world which emerges in the Euclidean sector of this theory is a bounce which
satisfies a semiclassical equation. After integrating out all degrees of
freedom except for a global scale factor, we obtain the ground state wave
function of the universe as a function of this scale factor.Comment: 15 pages, 4 figure
A First-Principles Study of Zinc Oxide Honeycomb Structures
We present a first-principles study of the atomic, electronic, and magnetic
properties of two-dimensional (2D), single and bilayer ZnO in honeycomb
structure and its armchair and zigzag nanoribbons. In order to reveal the
dimensionality effects, our study includes also bulk ZnO in wurtzite,
zincblende, and hexagonal structures. The stability of 2D ZnO, its nanoribbons
and flakes are analyzed by phonon frequency, as well as by finite temperature
ab initio molecular-dynamics calculations. 2D ZnO in honeycomb structure and
its armchair nanoribbons are nonmagnetic semiconductors but acquire net
magnetic moment upon the creation of zinc-vacancy defect. Zigzag ZnO
nanoribbons are ferromagnetic metals with spins localized at the oxygen atoms
at the edges and have high spin polarization at the Fermi level. However, they
change to nonmagnetic metal upon termination of their edges with hydrogen
atoms. From the phonon calculations, the fourth acoustical mode specified as
twisting mode is also revealed for armchair nanoribbon. Under tensile stress
the nanoribbons are deformed elastically maintaining honeycomblike structure
but yield at high strains. Beyond yielding point honeycomblike structure
undergo a structural change and deform plastically by forming large polygons.
The variation in the electronic and magnetic properties of these nanoribbons
have been examined under strain. It appears that plastically deformed
nanoribbons may offer a new class of materials with diverse properties.Comment: http://prb.aps.org/abstract/PRB/v80/i23/e23511
Unfolding first-principles band structures
A general method is presented to unfold band structures of first-principles
super-cell calculations with proper spectral weight, allowing easier
visualization of the electronic structure and the degree of broken
translational symmetry. The resulting unfolded band structures contain
additional rich information from the Kohn-Sham orbitals, and absorb the
structure factor that makes them ideal for a direct comparison with angular
resolved photoemission spectroscopy experiments. With negligible computational
expense via the use of Wannier functions, this simple method has great
practical value in the studies of a wide range of materials containing
impurities, vacancies, lattice distortions, or spontaneous long-range orders.Comment: 4 pages, 3 figure
Spin and Statistics and First Principles
It was shown in the early Seventies that, in Local Quantum Theory (that is
the most general formulation of Quantum Field Theory, if we leave out only the
unknown scenario of Quantum Gravity) the notion of Statistics can be grounded
solely on the local observable quantities (without assuming neither the
commutation relations nor even the existence of unobservable charged field
operators); one finds that only the well known (para)statistics of Bose/Fermi
type are allowed by the key principle of local commutativity of observables. In
this frame it was possible to formulate and prove the Spin and Statistics
Theorem purely on the basis of First Principles.
In a subsequent stage it has been possible to prove the existence of a
unique, canonical algebra of local field operators obeying ordinary Bose/Fermi
commutation relations at spacelike separations. In this general guise the Spin
- Statistics Theorem applies to Theories (on the four dimensional Minkowski
space) where only massive particles with finite mass degeneracy can occur. Here
we describe the underlying simple basic ideas, and briefly mention the
subsequent generalisations; eventually we comment on the possible validity of
the Spin - Statistics Theorem in presence of massless particles, or of
violations of locality as expected in Quantum Gravity.Comment: Survey based on a talk given at the Meeting on "Theoretical and
experimental aspects of the spin - statistics connection and related
symmetries", Trieste, Italy - October 21-25, 200
- …
