36,708 research outputs found

    First-Hitting Times Under Additive Drift

    Full text link
    For the last ten years, almost every theoretical result concerning the expected run time of a randomized search heuristic used drift theory, making it the arguably most important tool in this domain. Its success is due to its ease of use and its powerful result: drift theory allows the user to derive bounds on the expected first-hitting time of a random process by bounding expected local changes of the process -- the drift. This is usually far easier than bounding the expected first-hitting time directly. Due to the widespread use of drift theory, it is of utmost importance to have the best drift theorems possible. We improve the fundamental additive, multiplicative, and variable drift theorems by stating them in a form as general as possible and providing examples of why the restrictions we keep are still necessary. Our additive drift theorem for upper bounds only requires the process to be nonnegative, that is, we remove unnecessary restrictions like a finite, discrete, or bounded search space. As corollaries, the same is true for our upper bounds in the case of variable and multiplicative drift

    Cut-off and Escape Behaviors for Birth and Death Chains on Trees

    Full text link
    We consider families of discrete time birth and death chains on trees, and show that in presence of a drift towards the root of the tree, the chains exhibit cut-off behavior along the drift and escape behavior in the opposite direction.Comment: 22 pages, 1 figure. This new version, written after referee's suggestions, is shorter and features a more clear presentation of the results. The previous proofs of Section 3, based on difference equations method, are now given in appendi

    Abrupt Convergence and Escape Behavior for Birth and Death Chains

    Get PDF
    We link two phenomena concerning the asymptotical behavior of stochastic processes: (i) abrupt convergence or cut-off phenomenon, and (ii) the escape behavior usually associated to exit from metastability. The former is characterized by convergence at asymptotically deterministic times, while the convergence times for the latter are exponentially distributed. We compare and study both phenomena for discrete-time birth-and-death chains on Z with drift towards zero. In particular, this includes energy-driven evolutions with energy functions in the form of a single well. Under suitable drift hypotheses, we show that there is both an abrupt convergence towards zero and escape behavior in the other direction. Furthermore, as the evolutions are reversible, the law of the final escape trajectory coincides with the time reverse of the law of cut-off paths. Thus, for evolutions defined by one-dimensional energy wells with sufficiently steep walls, cut-off and escape behavior are related by time inversion.Comment: 2 figure
    corecore