4,401 research outputs found

    Tameness in least fixed-point logic and McColm's conjecture

    Get PDF
    We investigate four model-theoretic tameness properties in the context of least fixed-point logic over a family of finite structures. We find that each of these properties depends only on the elementary (i.e., first-order) limit theory, and we completely determine the valid entailments among them. In contrast to the context of first-order logic on arbitrary structures, the order property and independence property are equivalent in this setting. McColm conjectured that least fixed-point definability collapses to first-order definability exactly when proficiency fails. McColm's conjecture is known to be false in general. However, we show that McColm's conjecture is true for any family of finite structures whose limit theory is model-theoretically tame

    Fixed-parameter tractability, definability, and model checking

    Full text link
    In this article, we study parameterized complexity theory from the perspective of logic, or more specifically, descriptive complexity theory. We propose to consider parameterized model-checking problems for various fragments of first-order logic as generic parameterized problems and show how this approach can be useful in studying both fixed-parameter tractability and intractability. For example, we establish the equivalence between the model-checking for existential first-order logic, the homomorphism problem for relational structures, and the substructure isomorphism problem. Our main tractability result shows that model-checking for first-order formulas is fixed-parameter tractable when restricted to a class of input structures with an excluded minor. On the intractability side, for every t >= 0 we prove an equivalence between model-checking for first-order formulas with t quantifier alternations and the parameterized halting problem for alternating Turing machines with t alternations. We discuss the close connection between this alternation hierarchy and Downey and Fellows' W-hierarchy. On a more abstract level, we consider two forms of definability, called Fagin definability and slicewise definability, that are appropriate for describing parameterized problems. We give a characterization of the class FPT of all fixed-parameter tractable problems in terms of slicewise definability in finite variable least fixed-point logic, which is reminiscent of the Immerman-Vardi Theorem characterizing the class PTIME in terms of definability in least fixed-point logic.Comment: To appear in SIAM Journal on Computin

    Defining Recursive Predicates in Graph Orders

    Full text link
    We study the first order theory of structures over graphs i.e. structures of the form (G,Ο„\mathcal{G},\tau) where G\mathcal{G} is the set of all (isomorphism types of) finite undirected graphs and Ο„\tau some vocabulary. We define the notion of a recursive predicate over graphs using Turing Machine recognizable string encodings of graphs. We also define the notion of an arithmetical relation over graphs using a total order ≀t\leq_t on the set G\mathcal{G} such that (G,≀t\mathcal{G},\leq_t) is isomorphic to (N,≀\mathbb{N},\leq). We introduce the notion of a \textit{capable} structure over graphs, which is one satisfying the conditions : (1) definability of arithmetic, (2) definability of cardinality of a graph, and (3) definability of two particular graph predicates related to vertex labellings of graphs. We then show any capable structure can define every arithmetical predicate over graphs. As a corollary, any capable structure also defines every recursive graph relation. We identify capable structures which are expansions of graph orders, which are structures of the form (G,≀\mathcal{G},\leq) where ≀\leq is a partial order. We show that the subgraph order i.e. (G,≀s\mathcal{G},\leq_s), induced subgraph order with one constant P3P_3 i.e. (G,≀i,P3\mathcal{G},\leq_i,P_3) and an expansion of the minor order for counting edges i.e. (G,≀m,sameSize(x,y)\mathcal{G},\leq_m,sameSize(x,y)) are capable structures. In the course of the proof, we show the definability of several natural graph theoretic predicates in the subgraph order which may be of independent interest. We discuss the implications of our results and connections to Descriptive Complexity

    Tameness in least fixed-point logic and McColm's conjecture

    Get PDF
    We investigate four model-theoretic tameness properties in the context of least fixed-point logic over a family of finite structures. We find that each of these properties depends only on the elementary (i.e., first-order) limit theory, and we completely determine the valid entailments among them. In contrast to the context of first-order logic on arbitrary structures, the order property and independence property are equivalent in this setting. McColm conjectured that least fixed-point definability collapses to first-order definability exactly when proficiency fails. McColm's conjecture is known to be false in general. However, we show that McColm's conjecture is true for any family of finite structures whose limit theory is model-theoretically tame

    A Generalization of the {\L}o\'s-Tarski Preservation Theorem over Classes of Finite Structures

    Full text link
    We investigate a generalization of the {\L}o\'s-Tarski preservation theorem via the semantic notion of \emph{preservation under substructures modulo kk-sized cores}. It was shown earlier that over arbitrary structures, this semantic notion for first-order logic corresponds to definability by βˆƒkβˆ€βˆ—\exists^k\forall^* sentences. In this paper, we identify two properties of classes of finite structures that ensure the above correspondence. The first is based on well-quasi-ordering under the embedding relation. The second is a logic-based combinatorial property that strictly generalizes the first. We show that starting with classes satisfying any of these properties, the classes obtained by applying operations like disjoint union, cartesian and tensor products, or by forming words and trees over the classes, inherit the same property. As a fallout, we obtain interesting classes of structures over which an effective version of the {\L}o\'s-Tarski theorem holds.Comment: 28 pages, 1 figur

    Connection Matrices and the Definability of Graph Parameters

    Full text link
    In this paper we extend and prove in detail the Finite Rank Theorem for connection matrices of graph parameters definable in Monadic Second Order Logic with counting (CMSOL) from B. Godlin, T. Kotek and J.A. Makowsky (2008) and J.A. Makowsky (2009). We demonstrate its vast applicability in simplifying known and new non-definability results of graph properties and finding new non-definability results for graph parameters. We also prove a Feferman-Vaught Theorem for the logic CFOL, First Order Logic with the modular counting quantifiers
    • …
    corecore