1,153 research outputs found

    Strong Stationarity Conditions for Optimal Control of Hybrid Systems

    Full text link
    We present necessary and sufficient optimality conditions for finite time optimal control problems for a class of hybrid systems described by linear complementarity models. Although these optimal control problems are difficult in general due to the presence of complementarity constraints, we provide a set of structural assumptions ensuring that the tangent cone of the constraints possesses geometric regularity properties. These imply that the classical Karush-Kuhn-Tucker conditions of nonlinear programming theory are both necessary and sufficient for local optimality, which is not the case for general mathematical programs with complementarity constraints. We also present sufficient conditions for global optimality. We proceed to show that the dynamics of every continuous piecewise affine system can be written as the optimizer of a mathematical program which results in a linear complementarity model satisfying our structural assumptions. Hence, our stationarity results apply to a large class of hybrid systems with piecewise affine dynamics. We present simulation results showing the substantial benefits possible from using a nonlinear programming approach to the optimal control problem with complementarity constraints instead of a more traditional mixed-integer formulation.Comment: 30 pages, 4 figure

    KKT reformulation and necessary conditions for optimality in nonsmooth bilevel optimization

    No full text
    For a long time, the bilevel programming problem has essentially been considered as a special case of mathematical programs with equilibrium constraints (MPECs), in particular when the so-called KKT reformulation is in question. Recently though, this widespread believe was shown to be false in general. In this paper, other aspects of the difference between both problems are revealed as we consider the KKT approach for the nonsmooth bilevel program. It turns out that the new inclusion (constraint) which appears as a consequence of the partial subdifferential of the lower-level Lagrangian (PSLLL) places the KKT reformulation of the nonsmooth bilevel program in a new class of mathematical program with both set-valued and complementarity constraints. While highlighting some new features of this problem, we attempt here to establish close links with the standard optimistic bilevel program. Moreover, we discuss possible natural extensions for C-, M-, and S-stationarity concepts. Most of the results rely on a coderivative estimate for the PSLLL that we also provide in this paper

    Mathematical programs with complementarity constraints: convergence properties of a smoothing method

    Get PDF
    In this paper, optimization problems PP with complementarity constraints are considered. Characterizations for local minimizers xˉ\bar{x} of PP of Orders 1 and 2 are presented. We analyze a parametric smoothing approach for solving these programs in which PP is replaced by a perturbed problem PτP_{\tau} depending on a (small) parameter τ\tau. We are interested in the convergence behavior of the feasible set Fτ\cal{F}_{\tau} and the convergence of the solutions xˉτ\bar{x}_{\tau} of PτP_{\tau} for τ0.\tau\to 0. In particular, it is shown that, under generic assumptions, the solutions xˉτ\bar{x}_{\tau} are unique and converge to a solution xˉ\bar{x} of PP with a rate O(τ)\cal{O}(\sqrt{\tau}). Moreover, the convergence for the Hausdorff distance d(Fτd(\cal{F}_{\tau}, F)\cal{F}) between the feasible sets of PτP_{\tau} and PP is of order O(τ)\cal{O}(\sqrt{\tau})
    corecore