14,733 research outputs found
DEMO: Attaching InternalBlue to the Proprietary macOS IOBluetooth Framework
In this demo, we provide an overview of the macOS Bluetooth stack internals
and gain access to undocumented low-level interfaces. We leverage this
knowledge to add macOS support to the InternalBlue firmware modification and
wireless experimentation framework.Comment: 13th ACM Conference on Security and Privacy in Wireless and Mobile
Network
InternalBlue - Bluetooth Binary Patching and Experimentation Framework
Bluetooth is one of the most established technologies for short range digital
wireless data transmission. With the advent of wearables and the Internet of
Things (IoT), Bluetooth has again gained importance, which makes security
research and protocol optimizations imperative. Surprisingly, there is a lack
of openly available tools and experimental platforms to scrutinize Bluetooth.
In particular, system aspects and close to hardware protocol layers are mostly
uncovered.
We reverse engineer multiple Broadcom Bluetooth chipsets that are widespread
in off-the-shelf devices. Thus, we offer deep insights into the internal
architecture of a popular commercial family of Bluetooth controllers used in
smartphones, wearables, and IoT platforms. Reverse engineered functions can
then be altered with our InternalBlue Python framework---outperforming
evaluation kits, which are limited to documented and vendor-defined functions.
The modified Bluetooth stack remains fully functional and high-performance.
Hence, it provides a portable low-cost research platform.
InternalBlue is a versatile framework and we demonstrate its abilities by
implementing tests and demos for known Bluetooth vulnerabilities. Moreover, we
discover a novel critical security issue affecting a large selection of
Broadcom chipsets that allows executing code within the attacked Bluetooth
firmware. We further show how to use our framework to fix bugs in chipsets out
of vendor support and how to add new security features to Bluetooth firmware
Defending Against Firmware Cyber Attacks on Safety-Critical Systems
In the past, it was not possible to update the underlying software in many industrial control devices. Engineering
teams had to ‘rip and replace’ obsolete components. However, the ability to make firmware updates has provided
significant benefits to the companies who use Programmable Logic Controllers (PLCs), switches, gateways and
bridges as well as an array of smart sensor/actuators. These updates include security patches when vulnerabilities are
identified in existing devices; they can be distributed by physical media but are increasingly downloaded over
Internet connections. These mechanisms pose a growing threat to the cyber security of safety-critical applications,
which are illustrated by recent attacks on safety-related infrastructures across the Ukraine. Subsequent sections
explain how malware can be distributed within firmware updates. Even when attackers cannot reverse engineer the
code necessary to disguise their attack, they can undermine a device by forcing it into a constant upload cycle where
the firmware installation never terminates. In this paper, we present means of mitigating the risks of firmware attack
on safety-critical systems as part of wider initiatives to secure national critical infrastructures. Technical solutions,
including firmware hashing, must be augmented by organizational measures to secure the supply chain within
individual plants, across companies and throughout safety-related industries
Securing Our Future Homes: Smart Home Security Issues and Solutions
The Internet of Things, commonly known as IoT, is a new technology transforming businesses, individuals’ daily lives and the operation of entire countries. With more and more devices becoming equipped with IoT technology, smart homes are becoming increasingly popular. The components that make up a smart home are at risk for different types of attacks; therefore, security engineers are developing solutions to current problems and are predicting future types of attacks. This paper will analyze IoT smart home components, explain current security risks, and suggest possible solutions. According to “What is a Smart Home” (n.d.), a smart home is a home that always operates in consideration of security, energy, efficiency and convenience, whether anyone is home or not
- …
