3 research outputs found

    Neural Intrinsic timescales in the macaque dorsal premotor cortex predict the strength of spatial response coding

    Get PDF
    Our brain continuously receives information over multiple timescales that are differently processed across areas. In this study, we investigated the intrinsic timescale of neurons in the dorsal premotor cortex (PMd) of two rhesus macaques while performing a non-match-to-goal task. The task rule was to reject the previously chosen target and select the alternative one. We defined the intrinsic timescale as the decay constant of the autocorrelation structure computed during a baseline period of the task. We found that neurons with longer intrinsic timescale tended to maintain a stronger spatial response coding during a delay period. This result suggests that longer intrinsic timescales predict the functional role of PMd neurons in a cognitive task. Our estimate of the intrinsic timescale integrates an existing hierarchical model (Murray et al., 2014), by assigning to PMd a lower position than prefrontal cortex in the hierarchical ordering of the brain areas based on neurons' timescales

    Firing variability of frontal pole neurons during a cued strategy task

    No full text
    In previous reports, we described neuronal activity in the polar (PFp), dorsolateral (PFdl), and orbital (PFo) PFC as monkeys performed a cued strategy task with two spatial goals. On each trial, a cue instructed one of two strategies: Stay with the previous goal or shift to the alternative. A delay period followed each cue, and feedback followed each choice, also at a delay. Our initial analysis showed that the mean firing rate of a population of PFp cells encoded the goal chosen on a trial, but only near the time of feedback, not earlier in the trial. In contrast, PFdl cells encoded goals and strategies during the cue and delay periods, and PFo cells encoded strategies in those task periods. Both areas also signaled goals near feedback time. Here we analyzed trial-to-trial variability of neuronal firing, as measured by the Fano factor (FF): the ratio of variance to the mean. Goal-selective PFp neurons had two properties: (1) a lower FF from the beginning of the trial compared with PFp cells that did not encode goals and (2) a weak but significant inverse correlation between FF throughout a trial and the degree of goal selectivity at feedback time. Cells in PFdl and PFo showed neither of these properties. Our findings indicate that goal-selective PFp neurons were engaged in the task throughout a trial, although they only encoded goals near feedback time. Their lower FF could improve the ability of other cortical areas to decode its selected-goal signal
    corecore