1 research outputs found

    Firing Rate Adaptation without Losing Sensitivity to Input Fluctuations

    No full text
    Spike frequency adaptation is an important cellular mechanism by which neocortical neurons accommodate their responses to transient, as well as sustained, stimulations. This can be quantified by the slope reduction in the f-I curves due to adaptation. When the neuron is driven by a noisy, in vivo-like current, adaptation might also affect the sensitivity to the uctuations of the input. We investigate how adaptation, due to calcium-dependent potassium current, affects the dynamics of the depolarization, as well as the stationary f-I curves of a white noise driven, integrate-and-fire model neuron. In addition to decreasing the slope of the f-I curves, adaptation of this type preserves the sensitivity of the neuron to the uctuations of the input
    corecore