49,347 research outputs found
Expanded Parameters in the Self-Organized Critical Forest Fire Model
The forest fire model has frequently been used as a way to test the theory of Self-Organized Criticality, which is a model of complexity. The model analyzes commonalities in randomly generated forest fires using a computer simulation. In previous models, only the nearest neighbors to a tree on fire catch on fire, and it has been assumed that if further neighboring trees also catch on fire, then it will still exhibit self-organized criticality. Testing this assumption aids to the exploration of the applicability of self-organized criticality because the model is the most useful when it applies to a large range of systems, as closely related to nature as possible
Flux Analysis in Process Models via Causality
We present an approach for flux analysis in process algebra models of
biological systems. We perceive flux as the flow of resources in stochastic
simulations. We resort to an established correspondence between event
structures, a broadly recognised model of concurrency, and state transitions of
process models, seen as Petri nets. We show that we can this way extract the
causal resource dependencies in simulations between individual state
transitions as partial orders of events. We propose transformations on the
partial orders that provide means for further analysis, and introduce a
software tool, which implements these ideas. By means of an example of a
published model of the Rho GTP-binding proteins, we argue that this approach
can provide the substitute for flux analysis techniques on ordinary
differential equation models within the stochastic setting of process algebras
Applying the lessons of the attack on the World Trade Center, 11th September 2001, to the design and use of interactive evacuation simulations
The collapse of buildings, such as terminal 2E at Paris' Charles de Gaule Airport, and of fires, such as the Rhode Island, Station Night Club tragedy, has focused public attention on the safety of large public buildings. Initiatives in the United States and in Europe have led to the development of interactive simulators that model evacuation from these buildings. The tools avoid some of the ethical and legal problems from simulating evacuations; many people were injured during the 1993 evacuation of the World Trade Center (WTC) complex. They also use many concepts that originate within the CHI communities. For instance, some simulators use simple task models to represent the occupants' goal structures as they search for an available exit. However, the recent release of the report from the National Commission on Terrorist Attacks upon the United States (the '9/11 commission') has posed serious questions about the design and use of this particular class of interactive systems. This paper argues that simulation research needs to draw on insights from the CHI communities in order to meet some the challenges identified by the 9/11 commission
Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011
Lessons from the evacuation of the World Trade Center, Sept 11th 2001 for the future development of computer simulations
This paper provides an overview of the state of the art in evacuation simulations. These interactive computer based tools have been developed to help the owners and designers of large public buildings to assess the risks that occupants might face during emergency egress. The development of the Glasgow Evacuation Simulator is used to illustrate the existing generation of tools. This system uses Monte Carlo techniques to control individual and group movements during an evacuation. The end-user can interactively open and block emergency exits at any point. It is also possible to alter the priorities that individuals associate with particular exit routes. A final benefit is that the tool can derive evacuation simulations directly from existing architects models; this reduces the cost of simulations and creates a more prominent role for these tools in the iterative development of large-scale public buildings. Empirical studies have been used to validate the GES system as a tool to support evacuation training. The development of these tools has been informed by numerous human factors studies and by recent accident investigations. For example, the 2003 fire in the Station nightclub in Rhode Island illustrated the way in which most building occupants retrace their steps to an entrance even when there are alternate fire exits. The second half of this paper uses this introduction to criticise the existing state of the art in evacuation simulations. These criticisms are based on a detailed study of the recent findings from the 9/11 Commission (2004). Ten different lessons are identified. Some relate to the need to better understand the role of building management and security systems in controlling egress from public buildings. Others relate to the human factors involved in coordinating distributed groups of emergency personnel who may be physically exhausted by the demands of an evacuation. Arguably the most important findings centre on the need to model the ingress and egress of emergency personnel from these structures. The previous focus of nearly all-existing simulation tools has been on the evacuation of building occupants rather than on the safety of first responders1
Evaluation of WRF-Sfire Performance with Field Observations from the FireFlux experiment
This study uses in-situ measurements collected during the FireFlux field
experiment to evaluate and improve the performance of coupled atmosphere-fire
model WRF-Sfire. The simulation by WRF-Sfire of the experimental burn shows
that WRF-Sfire is capable of providing realistic head fire rate-of-spread and
the vertical temperature structure of the fire plume, and, up to 10 m above
ground level, fire-induced surface flow and vertical velocities within the
plume. The model captured the changes in wind speed and direction before,
during, and after fire front passage, along with arrival times of wind speed,
temperature, and updraft maximae, at the two instrumented flux towers used in
FireFlux. The model overestimated vertical velocities and underestimated
horizontal wind speeds measured at tower heights above the 10 m, and it is
hypothesized that the limited model resolution over estimated the fire front
depth, leading to too high a heat release and, subsequently, too strong an
updraft. However, on the whole, WRF-Sfire fire plume behavior is consistent
with the interpretation of FireFlux observations. The study suggests optimal
experimental pre-planning, design, and execution of future field campaigns that
are needed for further coupled atmosphere-fire model development and
evaluation
- …
