9,295 research outputs found

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator

    Full text link
    [EN] This paper deals with the problem of stabilizing a class of input-delayed systems with (possibly) nonlinear uncertainties by using explicit delay compensation. It is well known that plain predictive schemes lack robustness with respect to uncertain model parameters. In this work, an uncertainty estimator is derived for input-delay systems and combined with a modified state predictor, which uses current available information of the estimated uncertainties. Furthermore, based on Lyapunov-Krasovskii functionals, a computable criterion to check robust stability of the closed-loop is developed and cast into a minimization problem constrained to an LMI. Additionally, for a given input delay, an iterative-LMI algorithm is proposed to design stabilizing tuning parameters. The main results are illustrated and validated using a numerical example with a second-order dynamic system.This work was partially supported by projects PROMETEOII/2013/004, Conselleria d Educació, Generalitat Valenciana, and TIN2014-56158-C4-4-P-AR, Ministerio de Economía y Competitividad, Spain.Sanz Diaz, R.; García Gil, PJ.; Albertos Pérez, P.; Zhong, Q. (2017). Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator. International Journal of Robust and Nonlinear Control. 27(10):1826-1840. https://doi.org/10.1002/rnc.3639S182618402710Stability and Stabilization of Systems with Time Delay. (2011). IEEE Control Systems, 31(1), 38-65. doi:10.1109/mcs.2010.939135Normey-Rico, J. E., Bordons, C., & Camacho, E. F. (1997). Improving the robustness of dead-time compensating PI controllers. Control Engineering Practice, 5(6), 801-810. doi:10.1016/s0967-0661(97)00064-6Michiels, W., & Niculescu, S.-I. (2003). On the delay sensitivity of Smith Predictors. International Journal of Systems Science, 34(8-9), 543-551. doi:10.1080/00207720310001609057Normey-Rico, J. E., & Camacho, E. F. (2008). Dead-time compensators: A survey. Control Engineering Practice, 16(4), 407-428. doi:10.1016/j.conengprac.2007.05.006Guzmán, J. L., García, P., Hägglund, T., Dormido, S., Albertos, P., & Berenguel, M. (2008). Interactive tool for analysis of time-delay systems with dead-time compensators. Control Engineering Practice, 16(7), 824-835. doi:10.1016/j.conengprac.2007.09.002Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023Moon, Y. S., Park, P., & Kwon, W. H. (2001). Robust stabilization of uncertain input-delayed systems using reduction method. Automatica, 37(2), 307-312. doi:10.1016/s0005-1098(00)00145-xYue, D. (2004). Robust stabilization of uncertain systems with unknown input delay. Automatica, 40(2), 331-336. doi:10.1016/j.automatica.2003.10.005Yue, D., & Han, Q.-L. (2005). Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 41(2), 233-240. doi:10.1016/j.automatica.2004.09.006Lozano, R., Castillo, P., Garcia, P., & Dzul, A. (2004). Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter. Automatica, 40(4), 603-612. doi:10.1016/j.automatica.2003.10.007Gonzalez, A., Garcia, P., Albertos, P., Castillo, P., & Lozano, R. (2012). Robustness of a discrete-time predictor-based controller for time-varying measurement delay. Control Engineering Practice, 20(2), 102-110. doi:10.1016/j.conengprac.2011.09.001Karafyllis, I., & Krstic, M. (2013). Robust predictor feedback for discrete-time systems with input delays. International Journal of Control, 86(9), 1652-1663. doi:10.1080/00207179.2013.792005Krstic, M. (2010). Input Delay Compensation for Forward Complete and Strict-Feedforward Nonlinear Systems. IEEE Transactions on Automatic Control, 55(2), 287-303. doi:10.1109/tac.2009.2034923Bekiaris-Liberis, N., & Krstic, M. (2011). Compensation of Time-Varying Input and State Delays for Nonlinear Systems. Journal of Dynamic Systems, Measurement, and Control, 134(1). doi:10.1115/1.4005278Karafyllis, I., Malisoff, M., Mazenc, F., & Pepe, P. (Eds.). (2016). Recent Results on Nonlinear Delay Control Systems. Advances in Delays and Dynamics. doi:10.1007/978-3-319-18072-4Cacace, F., Conte, F., Germani, A., & Pepe, P. (2016). Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors. International Journal of Robust and Nonlinear Control, 26(16), 3524-3540. doi:10.1002/rnc.3517Fridman, E., & Shaked, U. (2002). An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, 47(11), 1931-1937. doi:10.1109/tac.2002.804462Fridman, E., & Shaked, U. (2002). A descriptor system approach to H/sub ∞/ control of linear time-delay systems. IEEE Transactions on Automatic Control, 47(2), 253-270. doi:10.1109/9.983353Chen, W.-H., & Zheng, W. X. (2006). On improved robust stabilization of uncertain systems with unknown input delay. Automatica, 42(6), 1067-1072. doi:10.1016/j.automatica.2006.02.015Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010Léchappé, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003Roh, Y.-H., & Oh, J.-H. (1999). Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation. Automatica, 35(11), 1861-1865. doi:10.1016/s0005-1098(99)00106-5Bresch-Pietri, D., & Krstic, M. (2009). Adaptive trajectory tracking despite unknown input delay and plant parameters. Automatica, 45(9), 2074-2081. doi:10.1016/j.automatica.2009.04.027Kamalapurkar, R., Fischer, N., Obuz, S., & Dixon, W. E. (2016). Time-Varying Input and State Delay Compensation for Uncertain Nonlinear Systems. IEEE Transactions on Automatic Control, 61(3), 834-839. doi:10.1109/tac.2015.2451472Chen, W.-H., Ohnishi, K., & Guo, L. (2015). Advances in Disturbance/Uncertainty Estimation and Attenuation [Guest editors’ introduction]. IEEE Transactions on Industrial Electronics, 62(9), 5758-5762. doi:10.1109/tie.2015.2453347Chen, W.-H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Transactions on Industrial Electronics, 63(2), 1083-1095. doi:10.1109/tie.2015.2478397Sariyildiz E Ohnishi K Design constraints of disturbance observer in the presence of time delay 2013 IEEE International Conference on Mechatronics (ICM) Vicenza, Italy 2013 69 74Wang, Q.-G., Hang, C. C., & Yang, X.-P. (2001). Single-loop controller design via IMC principles. Automatica, 37(12), 2041-2048. doi:10.1016/s0005-1098(01)00170-4Zheng, Q., & Gao, Z. (2014). Predictive active disturbance rejection control for processes with time delay. ISA Transactions, 53(4), 873-881. doi:10.1016/j.isatra.2013.09.021Chen, M., & Chen, W.-H. (2010). Disturbance-observer-based robust control for time delay uncertain systems. International Journal of Control, Automation and Systems, 8(2), 445-453. doi:10.1007/s12555-010-0233-5Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978Zhong, Q.-C., & Rees, D. (2004). Control of Uncertain LTI Systems Based on an Uncertainty and Disturbance Estimator. Journal of Dynamic Systems, Measurement, and Control, 126(4), 905-910. doi:10.1115/1.1850529Yong He, Min Wu, & Jin-Hua She. (2005). Improved bounded-real-lemma representation and H/sub /spl infin// control of systems with polytopic uncertainties. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(7), 380-383. doi:10.1109/tcsii.2005.850418CAO, Y.-Y., LAM, J., & SUN, Y.-X. (1998). Static Output Feedback Stabilization: An ILMI Approach. Automatica, 34(12), 1641-1645. doi:10.1016/s0005-1098(98)80021-6Marler, R. T., & Arora, J. S. (2009). The weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization, 41(6), 853-862. doi:10.1007/s00158-009-0460-7Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2Solomon, O., & Fridman, E. (2013). New stability conditions for systems with distributed delays. Automatica, 49(11), 3467-3475. doi:10.1016/j.automatica.2013.08.025Huaizhong Li, & Minyue Fu. (1997). A linear matrix inequality approach to robust H/sub ∞/ filtering. IEEE Transactions on Signal Processing, 45(9), 2338-2350. doi:10.1109/78.622956Šiljak, D. D., & Stipanovic, D. M. (2000). Robust stabilization of nonlinear systems: The LMI approach. Mathematical Problems in Engineering, 6(5), 461-493. doi:10.1155/s1024123x0000143

    Average-cost based robust structural control

    Get PDF
    A method is presented for the synthesis of robust controllers for linear time invariant structural systems with parameterized uncertainty. The method involves minimizing quantities related to the quadratic cost (H2-norm) averaged over a set of systems described by real parameters such as natural frequencies and modal residues. Bounded average cost is shown to imply stability over the set of systems. Approximations for the exact average are derived and proposed as cost functionals. The properties of these approximate average cost functionals are established. The exact average and approximate average cost functionals are used to derive dynamic controllers which can provide stability robustness. The robustness properties of these controllers are demonstrated in illustrative numerical examples and tested in a simple SISO experiment on the MIT multi-point alignment testbed

    Multi-Parametric Extremum Seeking-based Auto-Tuning for Robust Input-Output Linearization Control

    Full text link
    We study in this paper the problem of iterative feedback gains tuning for a class of nonlinear systems. We consider Input-Output linearizable nonlinear systems with additive uncertainties. We first design a nominal Input-Output linearization-based controller that ensures global uniform boundedness of the output tracking error dynamics. Then, we complement the robust controller with a model-free multi-parametric extremum seeking (MES) control to iteratively auto-tune the feedback gains. We analyze the stability of the whole controller, i.e. robust nonlinear controller plus model-free learning algorithm. We use numerical tests to demonstrate the performance of this method on a mechatronics example.Comment: To appear at the IEEE CDC 201
    corecore