37,297 research outputs found
Application of a continous time cluster algorithm to the Two-dimensional Random Quantum Ising Ferromagnet
A cluster algorithm formulated in continuous (imaginary) time is presented
for Ising models in a transverse field. It works directly with an infinite
number of time-slices in the imaginary time direction, avoiding the necessity
to take this limit explicitly. The algorithm is tested at the zero-temperature
critical point of the pure two-dimensional (2d) transverse Ising model. Then it
is applied to the 2d Ising ferromagnet with random bonds and transverse fields,
for which the phase diagram is determined. Finite size scaling at the quantum
critical point as well as the study of the quantum Griffiths-McCoy phase
indicate that the dynamical critical exponent is infinite as in 1d.Comment: 4 pages RevTeX, 3 eps-figures include
Critical properties of Ising model on Sierpinski fractals. A finite size scaling analysis approach
The present paper focuses on the order-disorder transition of an Ising model
on a self-similar lattice. We present a detailed numerical study, based on the
Monte Carlo method in conjunction with the finite size scaling method, of the
critical properties of the Ising model on some two dimensional deterministic
fractal lattices with different Hausdorff dimensions. Those with finite
ramification order do not display ordered phases at any finite temperature,
whereas the lattices with infinite connectivity show genuine critical behavior.
In particular we considered two Sierpinski carpets constructed using different
generators and characterized by Hausdorff dimensions d_H=log 8/log 3 = 1.8927..
and d_H=log 12/log 4 = 1.7924.., respectively.
The data show in a clear way the existence of an order-disorder transition at
finite temperature in both Sierpinski carpets.
By performing several Monte Carlo simulations at different temperatures and
on lattices of increasing size in conjunction with a finite size scaling
analysis, we were able to determine numerically the critical exponents in each
case and to provide an estimate of their errors.
Finally we considered the hyperscaling relation and found indications that it
holds, if one assumes that the relevant dimension in this case is the Hausdorff
dimension of the lattice.Comment: 21 pages, 7 figures; a new section has been added with results for a
second fractal; there are other minor change
Disorder Averaging and Finite Size Scaling
We propose a new picture of the renormalization group (RG) approach in the
presence of disorder, which considers the RG trajectories of each random sample
(realization) separately instead of the usual renormalization of the averaged
free energy. The main consequence of the theory is that the average over
randomness has to be taken after finding the critical point of each
realization. To demonstrate these concepts, we study the finite-size scaling
properties of the two-dimensional random-bond Ising model. We find that most of
the previously observed finite-size corrections are due to the sample-to-sample
fluctuation of the critical temperature and scaling is more adequate in terms
of the new scaling variables.Comment: 4 pages, 6 figures include
Magnetic properties and critical behavior of disordered Fe_{1-x}Ru_x alloys: a Monte Carlo approach
We study the critical behavior of a quenched random-exchange Ising model with
competing interactions on a bcc lattice. This model was introduced in the study
of the magnetic behavior of Fe_{1-x}Ru_x alloys for ruthenium concentrations
x=0%, x=4%, x=6%, and x=8%. Our study is carried out within a Monte Carlo
approach, with the aid of a re-weighting multiple histogram technique. By means
of a finite-size scaling analysis of several thermodynamic quantities, taking
into account up to the leading irrelevant scaling field term, we find estimates
of the critical exponents \alpha, \beta, \gamma, and \nu, and of the critical
temperatures of the model. Our results for x=0% are in excellent agreement with
those for the three-dimensional pure Ising model in the literature. We also
show that our critical exponent estimates for the disordered cases are
consistent with those reported for the transition line between paramagnetic and
ferromagnetic phases of both randomly dilute and Ising models. We
compare the behavior of the magnetization as a function of temperature with
that obtained by Paduani and Branco (2008), qualitatively confirming the
mean-field result. However, the comparison of the critical temperatures
obtained in this work with experimental measurements suggest that the model
(initially obtained in a mean-field approach) needs to be modified
Truncated Hilbert space approach to the 2d theory
We apply the massive analogue of the truncated conformal space approach to
study the two dimensional theory in finite volume. We focus on the
broken phase and determine the finite size spectrum of the model numerically.
We interpret the results in terms of the Bethe-Yang spectrum, from which we
extract the infinite volume masses and scattering matrices for various
couplings. We compare these results against semiclassical analysis and
perturbation theory. We also analyze the critical point of the model and
confirm that it is in the Ising universality class.Comment: pdflatex, 35 pages with 29 pdf figures. Binary program is also
attached, run on linux as: phi4 config.dat, v2: typos corrected, comparison
to other works and references added, vacuum splitting analysis corrected,
comparison to sine-Gordon TCSA added, v3: improved numerics, analysis on
excited kink added, critical point investigate
Griffiths singularities in the two dimensional diluted Ising model
We study numerically the probability distribution of the Yang-Lee zeroes
inside the Griffiths phase for the two dimensional site diluted Ising model and
we check that the shape of this distribution is that predicted in previous
analytical works. By studying the finite size scaling of the averaged smallest
zero at the phase transition we extract, for two values of the dilution, the
anomalous dimension, , which agrees very well with the previous estimated
values.Comment: 11 pages and 4 figures, some minor changes in Fig. 4, available at
http://chimera.roma1.infn.it/index_papers_complex.htm
- …
