1,228,720 research outputs found
Hybrid finite difference/finite element immersed boundary method
The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian
description of the structural deformations, stresses, and forces along with an Eulerian description of the
momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary
methods described immersed elastic structures using systems of flexible fibers, and even now, most
immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This
work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian
variables that facilitates independent spatial discretizations for the structure and background grid. This
approach employs a finite element discretization of the structure while retaining a finite difference scheme
for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively
contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases
in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors
that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes.
The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse
structural meshes with the immersed boundary method. This work also contrasts two different weak forms
of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations
facilitated by our coupling approach
Real space finite difference method for conductance calculations
We present a general method for calculating coherent electronic transport in
quantum wires and tunnel junctions. It is based upon a real space high order
finite difference representation of the single particle Hamiltonian and wave
functions. Landauer's formula is used to express the conductance as a
scattering problem. Dividing space into a scattering region and left and right
ideal electrode regions, this problem is solved by wave function matching (WFM)
in the boundary zones connecting these regions. The method is tested on a model
tunnel junction and applied to sodium atomic wires. In particular, we show that
using a high order finite difference approximation of the kinetic energy
operator leads to a high accuracy at moderate computational costs.Comment: 13 pages, 10 figure
A Finite Difference Method for the One-dimensional Variational Boussinesq Equations
The variational Boussinesq equations derived by Klopman et. al. (2005) con-verse mass, momentum and positive-definite energy. Moreover, they were shown to have significantly improved frequency dispersion characteristics, making it suitable for wave simulation from relatively deep to shallow water. In this paper we develop a numerica lcode for the variational Boussinesq equations. This code uses a fourth-order predictor-corrector method for time derivatives and fourth-order finite difference method for the first-order spatial derivatives. The numerical method is validated against experimen-tal data for one-dimensional nonlinear wave transformation problems. Furthermore, the method is used to illustrate the dispersive effects on tsunami-type of wave propagation.DOI : http://dx.doi.org/10.22342/jims.14.1.57.1-1
Computer Analysis of Dielectric Waveguides: A Finite-Difference Method
A method for computing the modes of dielectric guiding structures based on finite differences is described. The numerical computation program is efficient and can be applied to a wide range of problems. We report here solutions for circular and rectangular dielectric waveguides and compare our solutions with those obtained by other methods. Limitations in the commonly used approximate formulas developed by Marcatili are discussed
Hybrid Spectral Difference/Embedded Finite Volume Method for Conservation Laws
A novel hybrid spectral difference/embedded finite volume method is
introduced in order to apply a discontinuous high-order method for large scale
engineering applications involving discontinuities in the flows with complex
geometries. In the proposed hybrid approach, the finite volume (FV) element,
consisting of structured FV subcells, is embedded in the base hexahedral
element containing discontinuity, and an FV based high-order shock-capturing
scheme is employed to overcome the Gibbs phenomena. Thus, a discontinuity is
captured at the resolution of FV subcells within an embedded FV element. In the
smooth flow region, the SD element is used in the base hexahedral element.
Then, the governing equations are solved by the SD method. The SD method is
chosen for its low numerical dissipation and computational efficiency
preserving high-order accurate solutions. The coupling between the SD element
and the FV element is achieved by the globally conserved mortar method. In this
paper, the 5th-order WENO scheme with the characteristic decomposition is
employed as the shock-capturing scheme in the embedded FV element, and the
5th-order SD method is used in the smooth flow field.
The order of accuracy study and various 1D and 2D test cases are carried out,
which involve the discontinuities and vortex flows. Overall, it is shown that
the proposed hybrid method results in comparable or better simulation results
compared with the standalone WENO scheme when the same number of solution DOF
is considered in both SD and FV elements.Comment: 27 pages, 17 figures, 2 tables, Accepted for publication in the
Journal of Computational Physics, April 201
On an explicit finite difference method for fractional diffusion equations
A numerical method to solve the fractional diffusion equation, which could
also be easily extended to many other fractional dynamics equations, is
considered. These fractional equations have been proposed in order to describe
anomalous transport characterized by non-Markovian kinetics and the breakdown
of Fick's law. In this paper we combine the forward time centered space (FTCS)
method, well known for the numerical integration of ordinary diffusion
equations, with the Grunwald-Letnikov definition of the fractional derivative
operator to obtain an explicit fractional FTCS scheme for solving the
fractional diffusion equation. The resulting method is amenable to a stability
analysis a la von Neumann. We show that the analytical stability bounds are in
excellent agreement with numerical tests. Comparison between exact analytical
solutions and numerical predictions are made.Comment: 22 pages, 6 figure
Efficient interface conditions for the finite difference beam propagation method
It is shown that by adapting the refractive indexes in the vicinity of interfaces, the 2-D beam propagation method based on the finite-difference (FDBPM) scheme can be made much more effective. This holds especially for TM modes propagating in structures with high-index contrasts, such as surface polaritons. A short discussion is given on the applicability of the FDBP
- …
