7 research outputs found

    Lean and Full Congruence Formats for Recursion

    Full text link
    In this paper I distinguish two (pre)congruence requirements for semantic equivalences and preorders on processes given as closed terms in a system description language with a recursion construct. A lean congruence preserves equivalence when replacing closed subexpressions of a process by equivalent alternatives. A full congruence moreover allows replacement within a recursive specification of subexpressions that may contain recursion variables bound outside of these subexpressions. I establish that bisimilarity is a lean (pre)congruence for recursion for all languages with a structural operational semantics in the ntyft/ntyxt format. Additionally, it is a full congruence for the tyft/tyxt format.Comment: To appear in: Proc. LICS'17, Reykjavik, Iceland, IEE

    Finite axiom systems for testing preorder and De Simone Process Languages

    Get PDF
    We prove that testing preorder of De Nicola and Hennessy is preserved by all operators of De Simone process languages. Building upon this result we propose an algorithm for generating axiomatisations of testing preorder for arbitrary De Simone process languages. The axiom systems produced by our algorithm are finite and complete for processes with nite behaviour. In order to achieve completeness for a subclass of processes with infiite behaviour we use one infinitary induction rule. The usefulness of our results is illustrated in specification and verification of small concurrent systems, where suspension, resumption and alternation of execution of component systems occur. We argue that better speci cations can be written in customised De Simone process languages, which contain both the standard operators as well as new De Simone operators that are specifically tailored for the task in hand. Moreover, the automatically generated axiom systems for such specification languages make the verification more straightforward

    Finite Axiom Systems for Testing Preorder and De Simone Process Languages

    No full text
    We prove that testing preorder of De Nicola and Hennessy is preserved by all De Simone process operators. Building upon this result we propose an algorithm for generating axiomatisations of testing preorder for arbitrary De Simone process languages

    Finite axiom systems for testing preorder and De Simone process languages

    No full text
    corecore