486 research outputs found

    Finite 33-connected homogeneous graphs

    Full text link
    A finite graph \G is said to be {\em (G,3)(G,3)-((connected)) homogeneous} if every isomorphism between any two isomorphic (connected) subgraphs of order at most 33 extends to an automorphism g∈Gg\in G of the graph, where GG is a group of automorphisms of the graph. In 1985, Cameron and Macpherson determined all finite (G,3)(G, 3)-homogeneous graphs. In this paper, we develop a method for characterising (G,3)(G,3)-connected homogeneous graphs. It is shown that for a finite (G,3)(G,3)-connected homogeneous graph \G=(V, E), either G_v^{\G(v)} is 22--transitive or G_v^{\G(v)} is of rank 33 and \G has girth 33, and that the class of finite (G,3)(G,3)-connected homogeneous graphs is closed under taking normal quotients. This leads us to study graphs where GG is quasiprimitive on VV. We determine the possible quasiprimitive types for GG in this case and give new constructions of examples for some possible types

    Which finitely generated Abelian groups admit isomorphic Cayley graphs?

    Full text link
    We show that Cayley graphs of finitely generated Abelian groups are rather rigid. As a consequence we obtain that two finitely generated Abelian groups admit isomorphic Cayley graphs if and only if they have the same rank and their torsion parts have the same cardinality. The proof uses only elementary arguments and is formulated in a geometric language.Comment: 16 pages; v2: added reference, reformulated quasi-convexity, v3: small corrections; to appear in Geometriae Dedicat

    Characterizing a vertex-transitive graph by a large ball

    Full text link
    It is well-known that a complete Riemannian manifold M which is locally isometric to a symmetric space is covered by a symmetric space. Here we prove that a discrete version of this property (called local to global rigidity) holds for a large class of vertex-transitive graphs, including Cayley graphs of torsion-free lattices in simple Lie groups, and Cayley graph of torsion-free virtually nilpotent groups. By contrast, we exhibit various examples of Cayley graphs of finitely presented groups (e.g. SL(4,Z)) which fail to have this property, answering a question of Benjamini, Ellis, and Georgakopoulos. Answering a question of Cornulier, we also construct a continuum of non pairwise isometric large-scale simply connected locally finite vertex-transitive graphs. This question was motivated by the fact that large-scale simply connected Cayley graphs are precisely Cayley graphs of finitely presented groups and therefore have countably many isometric classes.Comment: v1: 38 pages. With an Appendix by Jean-Claude Sikorav v2: 48 pages. Several improvements in the presentation. To appear in Journal of Topolog

    Amenable hyperbolic groups

    Full text link
    We give a complete characterization of the locally compact groups that are non-elementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover give a description of all Gromov-hyperbolic locally compact groups with a cocompact amenable subgroup: modulo a compact normal subgroup, these turn out to be either rank one simple Lie groups, or automorphism groups of semi-regular trees acting doubly transitively on the set of ends. As an application, we show that the class of hyperbolic locally compact groups with a cusp-uniform non-uniform lattice, is very restricted.Comment: 41 pages, no figure. v2: revised version (minor changes
    • …
    corecore