9,549 research outputs found

    Fingerprint Verification Using Spectral Minutiae Representations

    Get PDF
    Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and orientations suffering from various deformations such as translation, rotation, and scaling. The spectral minutiae representation introduced in this paper is a novel method to represent a minutiae set as a fixed-length feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. These characteristics enable the combination of fingerprint recognition systems with template protection schemes that require a fixed-length feature vector. This paper introduces the concept of algorithms for two representation methods: the location-based spectral minutiae representation and the orientation-based spectral minutiae representation. Both algorithms are evaluated using two correlation-based spectral minutiae matching algorithms. We present the performance of our algorithms on three fingerprint databases. We also show how the performance can be improved by using a fusion scheme and singular points

    Spectral representation of fingerprints

    Get PDF
    Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and directions suffering from various deformations such as translation, rotation and scaling. The spectral minutiae representation introduced in this paper is a novel method to represent a minutiae set as a fixed-length feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. These characteristics enable the combination of fingerprint recognition systems with a template protection scheme, which requires a fixed-length feature vector. This paper introduces the idea and algorithm of spectral minutiae representation. A correlation based spectral minutiae\ud matching algorithm is presented and evaluated. The scheme shows a promising result, with an equal error rate of 0.2% on manually extracted minutiae

    How can Francis Bacon help forensic science? The four idols of human biases

    Get PDF
    Much debate has focused on whether forensic science is indeed a science. This paper is not aimed at answering, or even trying to contribute to, this question. Rather, in this paper I try to find ways to improve forensic science by identifying potential vulnerabilities. To this end I use Francis Bacon's doctrine of idols which distinguishes between different types of human biases that may prevent scientific and objective inquiry. Bacon’s doctrine contains four sources for such biases: Idols Tribus (of the 'tribe'), Idols Specus (of the 'den'/'cave'), Idols Fori (of the 'market'), and Idols Theatre (of the 'theatre'). While his 400 year old doctrine does not, of course, perfectly match up with our current world view, it still provides a productive framework for examining and cataloguing some of the potential weaknesses and limitations in our current approach to forensic science

    Minutiae Based Thermal Human Face Recognition using Label Connected Component Algorithm

    Full text link
    In this paper, a thermal infra red face recognition system for human identification and verification using blood perfusion data and back propagation feed forward neural network is proposed. The system consists of three steps. At the very first step face region is cropped from the colour 24-bit input images. Secondly face features are extracted from the croped region, which will be taken as the input of the back propagation feed forward neural network in the third step and classification and recognition is carried out. The proposed approaches are tested on a number of human thermal infra red face images created at our own laboratory. Experimental results reveal the higher degree performanceComment: 7 pages, Conference. arXiv admin note: substantial text overlap with arXiv:1309.1000, arXiv:1309.0999, arXiv:1309.100

    Automatic Conflict Detection in Police Body-Worn Audio

    Full text link
    Automatic conflict detection has grown in relevance with the advent of body-worn technology, but existing metrics such as turn-taking and overlap are poor indicators of conflict in police-public interactions. Moreover, standard techniques to compute them fall short when applied to such diversified and noisy contexts. We develop a pipeline catered to this task combining adaptive noise removal, non-speech filtering and new measures of conflict based on the repetition and intensity of phrases in speech. We demonstrate the effectiveness of our approach on body-worn audio data collected by the Los Angeles Police Department.Comment: 5 pages, 2 figures, 1 tabl

    A Review of Audio Features and Statistical Models Exploited for Voice Pattern Design

    Full text link
    Audio fingerprinting, also named as audio hashing, has been well-known as a powerful technique to perform audio identification and synchronization. It basically involves two major steps: fingerprint (voice pattern) design and matching search. While the first step concerns the derivation of a robust and compact audio signature, the second step usually requires knowledge about database and quick-search algorithms. Though this technique offers a wide range of real-world applications, to the best of the authors' knowledge, a comprehensive survey of existing algorithms appeared more than eight years ago. Thus, in this paper, we present a more up-to-date review and, for emphasizing on the audio signal processing aspect, we focus our state-of-the-art survey on the fingerprint design step for which various audio features and their tractable statistical models are discussed.Comment: http://www.iaria.org/conferences2015/PATTERNS15.html ; Seventh International Conferences on Pervasive Patterns and Applications (PATTERNS 2015), Mar 2015, Nice, Franc
    corecore