1,571 research outputs found

    PerfWeb: How to Violate Web Privacy with Hardware Performance Events

    Full text link
    The browser history reveals highly sensitive information about users, such as financial status, health conditions, or political views. Private browsing modes and anonymity networks are consequently important tools to preserve the privacy not only of regular users but in particular of whistleblowers and dissidents. Yet, in this work we show how a malicious application can infer opened websites from Google Chrome in Incognito mode and from Tor Browser by exploiting hardware performance events (HPEs). In particular, we analyze the browsers' microarchitectural footprint with the help of advanced Machine Learning techniques: k-th Nearest Neighbors, Decision Trees, Support Vector Machines, and in contrast to previous literature also Convolutional Neural Networks. We profile 40 different websites, 30 of the top Alexa sites and 10 whistleblowing portals, on two machines featuring an Intel and an ARM processor. By monitoring retired instructions, cache accesses, and bus cycles for at most 5 seconds, we manage to classify the selected websites with a success rate of up to 86.3%. The results show that hardware performance events can clearly undermine the privacy of web users. We therefore propose mitigation strategies that impede our attacks and still allow legitimate use of HPEs

    NoisFre: Noise-Tolerant Memory Fingerprints from Commodity Devices for Security Functions

    Full text link
    Building hardware security primitives with on-device memory fingerprints is a compelling proposition given the ubiquity of memory in electronic devices, especially for low-end Internet of Things devices for which cryptographic modules are often unavailable. However, the use of fingerprints in security functions is challenged by the small, but unpredictable variations in fingerprint reproductions from the same device due to measurement noise. Our study formulates a novel and pragmatic approach to achieve highly reliable fingerprints from device memories. We investigate the transformation of raw fingerprints into a noise-tolerant space where the generation of fingerprints is intrinsically highly reliable. We derive formal performance bounds to support practitioners to easily adopt our methods for applications. Subsequently, we demonstrate the expressive power of our formalization by using it to investigate the practicability of extracting noise-tolerant fingerprints from commodity devices. Together with extensive simulations, we have employed 119 chips from five different manufacturers for extensive experimental validations. Our results, including an end-to-end implementation demonstration with a low-cost wearable Bluetooth inertial sensor capable of on-demand and runtime key generation, show that key generators with failure rates less than 10−610^-6 can be efficiently obtained with noise-tolerant fingerprints with a single fingerprint snapshot to support ease-of-enrollment.Comment: Accepted to IEEE Transactions on Dependable and Secure Computing. Yansong Gao and Yang Su contributed equally to the study and are co-first authors in alphabetical orde

    Deep Intellectual Property: A Survey

    Full text link
    With the widespread application in industrial manufacturing and commercial services, well-trained deep neural networks (DNNs) are becoming increasingly valuable and crucial assets due to the tremendous training cost and excellent generalization performance. These trained models can be utilized by users without much expert knowledge benefiting from the emerging ''Machine Learning as a Service'' (MLaaS) paradigm. However, this paradigm also exposes the expensive models to various potential threats like model stealing and abuse. As an urgent requirement to defend against these threats, Deep Intellectual Property (DeepIP), to protect private training data, painstakingly-tuned hyperparameters, or costly learned model weights, has been the consensus of both industry and academia. To this end, numerous approaches have been proposed to achieve this goal in recent years, especially to prevent or discover model stealing and unauthorized redistribution. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field. More than 190 research contributions are included in this survey, covering many aspects of Deep IP Protection: challenges/threats, invasive solutions (watermarking), non-invasive solutions (fingerprinting), evaluation metrics, and performance. We finish the survey by identifying promising directions for future research.Comment: 38 pages, 12 figure

    Defensive ML: Defending Architectural Side-channels with Adversarial Obfuscation

    Full text link
    Side-channel attacks that use machine learning (ML) for signal analysis have become prominent threats to computer security, as ML models easily find patterns in signals. To address this problem, this paper explores using Adversarial Machine Learning (AML) methods as a defense at the computer architecture layer to obfuscate side channels. We call this approach Defensive ML, and the generator to obfuscate signals, defender. Defensive ML is a workflow to design, implement, train, and deploy defenders for different environments. First, we design a defender architecture given the physical characteristics and hardware constraints of the side-channel. Next, we use our DefenderGAN structure to train the defender. Finally, we apply defensive ML to thwart two side-channel attacks: one based on memory contention and the other on application power. The former uses a hardware defender with ns-level response time that attains a high level of security with half the performance impact of a traditional scheme; the latter uses a software defender with ms-level response time that provides better security than a traditional scheme with only 70% of its power overhead.Comment: Preprint. Under revie
    • …
    corecore