3,634 research outputs found

    End-to-End Latent Fingerprint Search

    Full text link
    Latent fingerprints are one of the most important and widely used sources of evidence in law enforcement and forensic agencies. Yet the performance of the state-of-the-art latent recognition systems is far from satisfactory, and they often require manual markups to boost the latent search performance. Further, the COTS systems are proprietary and do not output the true comparison scores between a latent and reference prints to conduct quantitative evidential analysis. We present an end-to-end latent fingerprint search system, including automated region of interest (ROI) cropping, latent image preprocessing, feature extraction, feature comparison , and outputs a candidate list. Two separate minutiae extraction models provide complementary minutiae templates. To compensate for the small number of minutiae in small area and poor quality latents, a virtual minutiae set is generated to construct a texture template. A 96-dimensional descriptor is extracted for each minutia from its neighborhood. For computational efficiency, the descriptor length for virtual minutiae is further reduced to 16 using product quantization. Our end-to-end system is evaluated on three latent databases: NIST SD27 (258 latents); MSP (1,200 latents), WVU (449 latents) and N2N (10,000 latents) against a background set of 100K rolled prints, which includes the true rolled mates of the latents with rank-1 retrieval rates of 65.7%, 69.4%, 65.5%, and 7.6% respectively. A multi-core solution implemented on 24 cores obtains 1ms per latent to rolled comparison

    An Effective Fingerprint Classification and Search Method

    Full text link
    This paper presents an effective fingerprint classification method designed based on a hierarchical agglomerative clustering technique. The performance of the technique was evaluated in terms of several real-life datasets and a significant improvement in reducing the misclassification error has been noticed. This paper also presents a query based faster fingerprint search method over the clustered fingerprint databases. The retrieval accuracy of the search method has been found effective in light of several real-life databases.Comment: 10 pages, 8 figures, 6 tables, referred journal publicatio

    An Effective Fingerprint Verification Technique

    Full text link
    This paper presents an effective method for fingerprint verification based on a data mining technique called minutiae clustering and a graph-theoretic approach to analyze the process of fingerprint comparison to give a feature space representation of minutiae and to produce a lower bound on the number of detectably distinct fingerprints. The method also proving the invariance of each individual fingerprint by using both the topological behavior of the minutiae graph and also using a distance measure called Hausdorff distance.The method provides a graph based index generation mechanism of fingerprint biometric data. The self-organizing map neural network is also used for classifying the fingerprints.Comment: Submitted to Journal of Computer Science and Engineering, see http://sites.google.com/site/jcseuk/volume-1-issue-1-may-201

    Automated Latent Fingerprint Recognition

    Full text link
    Latent fingerprints are one of the most important and widely used evidence in law enforcement and forensic agencies worldwide. Yet, NIST evaluations show that the performance of state-of-the-art latent recognition systems is far from satisfactory. An automated latent fingerprint recognition system with high accuracy is essential to compare latents found at crime scenes to a large collection of reference prints to generate a candidate list of possible mates. In this paper, we propose an automated latent fingerprint recognition algorithm that utilizes Convolutional Neural Networks (ConvNets) for ridge flow estimation and minutiae descriptor extraction, and extract complementary templates (two minutiae templates and one texture template) to represent the latent. The comparison scores between the latent and a reference print based on the three templates are fused to retrieve a short candidate list from the reference database. Experimental results show that the rank-1 identification accuracies (query latent is matched with its true mate in the reference database) are 64.7% for the NIST SD27 and 75.3% for the WVU latent databases, against a reference database of 100K rolled prints. These results are the best among published papers on latent recognition and competitive with the performance (66.7% and 70.8% rank-1 accuracies on NIST SD27 and WVU DB, respectively) of a leading COTS latent Automated Fingerprint Identification System (AFIS). By score-level (rank-level) fusion of our system with the commercial off-the-shelf (COTS) latent AFIS, the overall rank-1 identification performance can be improved from 64.7% and 75.3% to 73.3% (74.4%) and 76.6% (78.4%) on NIST SD27 and WVU latent databases, respectively

    Latent Fingerprint Registration via Matching Densely Sampled Points

    Full text link
    Latent fingerprint matching is a very important but unsolved problem. As a key step of fingerprint matching, fingerprint registration has a great impact on the recognition performance. Existing latent fingerprint registration approaches are mainly based on establishing correspondences between minutiae, and hence will certainly fail when there are no sufficient number of extracted minutiae due to small fingerprint area or poor image quality. Minutiae extraction has become the bottleneck of latent fingerprint registration. In this paper, we propose a non-minutia latent fingerprint registration method which estimates the spatial transformation between a pair of fingerprints through a dense fingerprint patch alignment and matching procedure. Given a pair of fingerprints to match, we bypass the minutiae extraction step and take uniformly sampled points as key points. Then the proposed patch alignment and matching algorithm compares all pairs of sampling points and produces their similarities along with alignment parameters. Finally, a set of consistent correspondences are found by spectral clustering. Extensive experiments on NIST27 database and MOLF database show that the proposed method achieves the state-of-the-art registration performance, especially under challenging conditions

    Latent Fingerprint Recognition: Role of Texture Template

    Full text link
    We propose a texture template approach, consisting of a set of virtual minutiae, to improve the overall latent fingerprint recognition accuracy. To compensate for the lack of sufficient number of minutiae in poor quality latent prints, we generate a set of virtual minutiae. However, due to a large number of these regularly placed virtual minutiae, texture based template matching has a large computational requirement compared to matching true minutiae templates. To improve both the accuracy and efficiency of the texture template matching, we investigate: i) both original and enhanced fingerprint patches for training convolutional neural networks (ConvNets) to improve the distinctiveness of descriptors associated with each virtual minutiae, ii) smaller patches around virtual minutiae and a fast ConvNet architecture to speed up descriptor extraction, iii) reduce the descriptor length, iv) a modified hierarchical graph matching strategy to improve the matching speed, and v) extraction of multiple texture templates to boost the performance. Experiments on NIST SD27 latent database show that the above strategies can improve the matching speed from 11 ms (24 threads) per comparison (between a latent and a reference print) to only 7.7 ms (single thread) per comparison while improving the rank-1 accuracy by 8.9% against 10K gallery

    Fingerprint Distortion Rectification using Deep Convolutional Neural Networks

    Full text link
    Elastic distortion of fingerprints has a negative effect on the performance of fingerprint recognition systems. This negative effect brings inconvenience to users in authentication applications. However, in the negative recognition scenario where users may intentionally distort their fingerprints, this can be a serious problem since distortion will prevent recognition system from identifying malicious users. Current methods aimed at addressing this problem still have limitations. They are often not accurate because they estimate distortion parameters based on the ridge frequency map and orientation map of input samples, which are not reliable due to distortion. Secondly, they are not efficient and requiring significant computation time to rectify samples. In this paper, we develop a rectification model based on a Deep Convolutional Neural Network (DCNN) to accurately estimate distortion parameters from the input image. Using a comprehensive database of synthetic distorted samples, the DCNN learns to accurately estimate distortion bases ten times faster than the dictionary search methods used in the previous approaches. Evaluating the proposed method on public databases of distorted samples shows that it can significantly improve the matching performance of distorted samples.Comment: Accepted at ICB 201

    Fingerprint Recognition Using Minutia Score Matching

    Full text link
    The popular Biometric used to authenticate a person is Fingerprint which is unique and permanent throughout a person's life. A minutia matching is widely used for fingerprint recognition and can be classified as ridge ending and ridge bifurcation. In this paper we projected Fingerprint Recognition using Minutia Score Matching method (FRMSM). For Fingerprint thinning, the Block Filter is used, which scans the image at the boundary to preserves the quality of the image and extract the minutiae from the thinned image. The false matching ratio is better compared to the existing algorithm.Comment: 8 Page

    Minutiae Extraction from Fingerprint Images - a Review

    Full text link
    Fingerprints are the oldest and most widely used form of biometric identification. Everyone is known to have unique, immutable fingerprints. As most Automatic Fingerprint Recognition Systems are based on local ridge features known as minutiae, marking minutiae accurately and rejecting false ones is very important. However, fingerprint images get degraded and corrupted due to variations in skin and impression conditions. Thus, image enhancement techniques are employed prior to minutiae extraction. A critical step in automatic fingerprint matching is to reliably extract minutiae from the input fingerprint images. This paper presents a review of a large number of techniques present in the literature for extracting fingerprint minutiae. The techniques are broadly classified as those working on binarized images and those that work on gray scale images directly.Comment: 12 pages; IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, September 201

    An Effective Method for Fingerprint Classification

    Full text link
    This paper presents an effective method for fingerprint classification using data mining approach. Initially, it generates a numeric code sequence for each fingerprint image based on the ridge flow patterns. Then for each class, a seed is selected by using a frequent itemsets generation technique. These seeds are subsequently used for clustering the fingerprint images. The proposed method was tested and evaluated in terms of several real-life datasets and a significant improvement in reducing the misclassification errors has been noticed in comparison to its other counterparts.Comment: 9 pages, 7 figures, 6 tables referred journal publication. arXiv admin note: substantial text overlap with arXiv:1211.450
    • …
    corecore