56 research outputs found

    Deep Learning based Fingerprint Presentation Attack Detection: A Comprehensive Survey

    Full text link
    The vulnerabilities of fingerprint authentication systems have raised security concerns when adapting them to highly secure access-control applications. Therefore, Fingerprint Presentation Attack Detection (FPAD) methods are essential for ensuring reliable fingerprint authentication. Owing to the lack of generation capacity of traditional handcrafted based approaches, deep learning-based FPAD has become mainstream and has achieved remarkable performance in the past decade. Existing reviews have focused more on hand-cratfed rather than deep learning-based methods, which are outdated. To stimulate future research, we will concentrate only on recent deep-learning-based FPAD methods. In this paper, we first briefly introduce the most common Presentation Attack Instruments (PAIs) and publicly available fingerprint Presentation Attack (PA) datasets. We then describe the existing deep-learning FPAD by categorizing them into contact, contactless, and smartphone-based approaches. Finally, we conclude the paper by discussing the open challenges at the current stage and emphasizing the potential future perspective.Comment: 29 pages, submitted to ACM computing survey journa

    DyFFPAD: Dynamic Fusion of Convolutional and Handcrafted Features for Fingerprint Presentation Attack Detection

    Full text link
    Automatic fingerprint recognition systems suffer from the threat of presentation attacks due to their wide range of applications in areas including national borders and commercial applications. Presentation attacks can be performed by fabricating the fake fingerprint of a user with or without the intention of the subject. This paper presents a dynamic ensemble of deep learning and handcrafted features to detect presentation attacks in known-material and unknown-material protocols. The proposed model is a dynamic ensemble of deep CNN and handcrafted features empowered deep neural networks both of which learn their parameters together. The proposed presentation attack detection model, in this way, utilizes the capabilities of both classification techniques and exhibits better performance than their individual results. The proposed model's performance is validated using benchmark LivDet 2015, 2017, and 2019 databases, with an overall accuracy of 96.10\%, 96.49\%, and 95.99\% attained on them, respectively. The proposed model outperforms state-of-the-art methods in benchmark protocols of presentation attack detection in terms of classification accuracy.Comment: arXiv admin note: text overlap with arXiv:2305.0939

    On Generative Adversarial Network Based Synthetic Iris Presentation Attack And Its Detection

    Get PDF
    Human iris is considered a reliable and accurate modality for biometric recognition due to its unique texture information. Reliability and accuracy of iris biometric modality have prompted its large-scale deployment for critical applications such as border control and national identification projects. The extensive growth of iris recognition systems has raised apprehensions about the susceptibility of these systems to various presentation attacks. In this thesis, a novel iris presentation attack using deep learning based synthetically generated iris images is presented. Utilizing the generative capability of deep convolutional generative adversarial networks and iris quality metrics, a new framework, named as iDCGAN is proposed for creating realistic appearing synthetic iris images. In-depth analysis is performed using quality score distributions of real and synthetically generated iris images to understand the effectiveness of the proposed approach. We also demonstrate that synthetically generated iris images can be used to attack existing iris recognition systems. As synthetically generated iris images can be effectively deployed in iris presentation attacks, it is important to develop accurate iris presentation attack detection algorithms which can distinguish such synthetic iris images from real iris images. For this purpose, a novel structural and textural feature-based iris presentation attack detection framework (DESIST) is proposed. The key emphasis of DESIST is on developing a unified framework for detecting a medley of iris presentation attacks, including synthetic iris. Experimental evaluations showcase the efficacy of the proposed DESIST framework in detecting synthetic iris presentation attacks

    Análise de propriedades intrínsecas e extrínsecas de amostras biométricas para detecção de ataques de apresentação

    Get PDF
    Orientadores: Anderson de Rezende Rocha, Hélio PedriniTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Os recentes avanços nas áreas de pesquisa em biometria, forense e segurança da informação trouxeram importantes melhorias na eficácia dos sistemas de reconhecimento biométricos. No entanto, um desafio ainda em aberto é a vulnerabilidade de tais sistemas contra ataques de apresentação, nos quais os usuários impostores criam amostras sintéticas, a partir das informações biométricas originais de um usuário legítimo, e as apresentam ao sensor de aquisição procurando se autenticar como um usuário válido. Dependendo da modalidade biométrica, os tipos de ataque variam de acordo com o tipo de material usado para construir as amostras sintéticas. Por exemplo, em biometria facial, uma tentativa de ataque é caracterizada quando um usuário impostor apresenta ao sensor de aquisição uma fotografia, um vídeo digital ou uma máscara 3D com as informações faciais de um usuário-alvo. Em sistemas de biometria baseados em íris, os ataques de apresentação podem ser realizados com fotografias impressas ou com lentes de contato contendo os padrões de íris de um usuário-alvo ou mesmo padrões de textura sintéticas. Nos sistemas biométricos de impressão digital, os usuários impostores podem enganar o sensor biométrico usando réplicas dos padrões de impressão digital construídas com materiais sintéticos, como látex, massa de modelar, silicone, entre outros. Esta pesquisa teve como objetivo o desenvolvimento de soluções para detecção de ataques de apresentação considerando os sistemas biométricos faciais, de íris e de impressão digital. As linhas de investigação apresentadas nesta tese incluem o desenvolvimento de representações baseadas nas informações espaciais, temporais e espectrais da assinatura de ruído; em propriedades intrínsecas das amostras biométricas (e.g., mapas de albedo, de reflectância e de profundidade) e em técnicas de aprendizagem supervisionada de características. Os principais resultados e contribuições apresentadas nesta tese incluem: a criação de um grande conjunto de dados publicamente disponível contendo aproximadamente 17K videos de simulações de ataques de apresentações e de acessos genuínos em um sistema biométrico facial, os quais foram coletados com a autorização do Comitê de Ética em Pesquisa da Unicamp; o desenvolvimento de novas abordagens para modelagem e análise de propriedades extrínsecas das amostras biométricas relacionadas aos artefatos que são adicionados durante a fabricação das amostras sintéticas e sua captura pelo sensor de aquisição, cujos resultados de desempenho foram superiores a diversos métodos propostos na literature que se utilizam de métodos tradicionais de análise de images (e.g., análise de textura); a investigação de uma abordagem baseada na análise de propriedades intrínsecas das faces, estimadas a partir da informação de sombras presentes em sua superfície; e, por fim, a investigação de diferentes abordagens baseadas em redes neurais convolucionais para o aprendizado automático de características relacionadas ao nosso problema, cujos resultados foram superiores ou competitivos aos métodos considerados estado da arte para as diferentes modalidades biométricas consideradas nesta tese. A pesquisa também considerou o projeto de eficientes redes neurais com arquiteturas rasas capazes de aprender características relacionadas ao nosso problema a partir de pequenos conjuntos de dados disponíveis para o desenvolvimento e a avaliação de soluções para a detecção de ataques de apresentaçãoAbstract: Recent advances in biometrics, information forensics, and security have improved the recognition effectiveness of biometric systems. However, an ever-growing challenge is the vulnerability of such systems against presentation attacks, in which impostor users create synthetic samples from the original biometric information of a legitimate user and show them to the acquisition sensor seeking to authenticate themselves as legitimate users. Depending on the trait used by the biometric authentication, the attack types vary with the type of material used to build the synthetic samples. For instance, in facial biometric systems, an attempted attack is characterized by the type of material the impostor uses such as a photograph, a digital video, or a 3D mask with the facial information of a target user. In iris-based biometrics, presentation attacks can be accomplished with printout photographs or with contact lenses containing the iris patterns of a target user or even synthetic texture patterns. In fingerprint biometric systems, impostor users can deceive the authentication process using replicas of the fingerprint patterns built with synthetic materials such as latex, play-doh, silicone, among others. This research aimed at developing presentation attack detection (PAD) solutions whose objective is to detect attempted attacks considering different attack types, in each modality. The lines of investigation presented in this thesis aimed at devising and developing representations based on spatial, temporal and spectral information from noise signature, intrinsic properties of the biometric data (e.g., albedo, reflectance, and depth maps), and supervised feature learning techniques, taking into account different testing scenarios including cross-sensor, intra-, and inter-dataset scenarios. The main findings and contributions presented in this thesis include: the creation of a large and publicly available benchmark containing 17K videos of presentation attacks and bona-fide presentations simulations in a facial biometric system, whose collect were formally authorized by the Research Ethics Committee at Unicamp; the development of novel approaches to modeling and analysis of extrinsic properties of biometric samples related to artifacts added during the manufacturing of the synthetic samples and their capture by the acquisition sensor, whose results were superior to several approaches published in the literature that use traditional methods for image analysis (e.g., texture-based analysis); the investigation of an approach based on the analysis of intrinsic properties of faces, estimated from the information of shadows present on their surface; and the investigation of different approaches to automatically learning representations related to our problem, whose results were superior or competitive to state-of-the-art methods for the biometric modalities considered in this thesis. We also considered in this research the design of efficient neural networks with shallow architectures capable of learning characteristics related to our problem from small sets of data available to develop and evaluate PAD solutionsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação140069/2016-0 CNPq, 142110/2017-5CAPESCNP

    ECG Biometric for Human Authentication using Hybrid Method

    Get PDF
    Recently there is more usage of deep learning in biometrics. Electrocardiogram (ECG) for person authentication is not the exception. However the performance of the deep learning networks purely relay on the datasets and trainings, In this work we propose a fusion of pretrained Convolutional Neural Networks (CNN) such as Googlenet with SVM for person authentication using there ECG as biometric. The one dimensional ECG signals are filtered and converted into a standard size with suitable format before it is used to train the networks. An evaluation of performances shows the good results with the pre-trained network that is Googlenet. The accuracy results reveal that the proposed fusion method outperforms with an average accuracy of 95.0%

    ECG Biometric Recognition: Review, System Proposal, and Benchmark Evaluation

    Full text link
    Electrocardiograms (ECGs) have shown unique patterns to distinguish between different subjects and present important advantages compared to other biometric traits, such as difficulty to counterfeit, liveness detection, and ubiquity. Also, with the success of Deep Learning technologies, ECG biometric recognition has received increasing interest in recent years. However, it is not easy to evaluate the improvements of novel ECG proposed methods, mainly due to the lack of public data and standard experimental protocols. In this study, we perform extensive analysis and comparison of different scenarios in ECG biometric recognition. Both verification and identification tasks are investigated, as well as single- and multi-session scenarios. Finally, we also perform single- and multi-lead ECG experiments, considering traditional scenarios using electrodes in the chest and limbs and current user-friendly wearable devices. In addition, we present ECGXtractor, a robust Deep Learning technology trained with an in-house large-scale database and able to operate successfully across various scenarios and multiple databases. We introduce our proposed feature extractor, trained with multiple sinus-rhythm heartbeats belonging to 55,967 subjects, and provide a general public benchmark evaluation with detailed experimental protocol. We evaluate the system performance over four different databases: i) our in-house database, ii) PTB, iii) ECG-ID, and iv) CYBHi. With the widely used PTB database, we achieve Equal Error Rates of 0.14% and 2.06% in verification, and accuracies of 100% and 96.46% in identification, respectively in single- and multi-session analysis. We release the source code, experimental protocol details, and pre-trained models in GitHub to advance in the field.Comment: 11 pages, 4 figure

    Object Detection and Classification in the Visible and Infrared Spectrums

    Get PDF
    The over-arching theme of this dissertation is the development of automated detection and/or classification systems for challenging infrared scenarios. The six works presented herein can be categorized into four problem scenarios. In the first scenario, long-distance detection and classification of vehicles in thermal imagery, a custom convolutional network architecture is proposed for small thermal target detection. For the second scenario, thermal face landmark detection and thermal cross-spectral face verification, a publicly-available visible and thermal face dataset is introduced, along with benchmark results for several landmark detection and face verification algorithms. Furthermore, a novel visible-to-thermal transfer learning algorithm for face landmark detection is presented. The third scenario addresses near-infrared cross-spectral periocular recognition with a coupled conditional generative adversarial network guided by auxiliary synthetic loss functions. Finally, a deep sparse feature selection and fusion is proposed to detect the presence of textured contact lenses prior to near-infrared iris recognition

    Handbook of Vascular Biometrics

    Get PDF
    corecore