2,207 research outputs found

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    Finger vein identification based on transfer learning of AlexNet

    Get PDF
    Nowadays finger vein-based validation systems are getting extra attraction among other authentication systems due to high security in terms of ensuring data confidentiality. This system works by recognizing patterns from finger vein images and these images are captured using a camera based on near-infrared technology. In this research, we focused finger vein identification system by using our own finger vein dataset, we trained it with transfer learning of AlexNet model and verified by test images. We have done three different experiments with the same dataset but different sizes of data. Therefore, we obtained varied predictability with 95% accuracy from the second experiment

    Finger-Vein Recognition Based on Gabor Features

    Get PDF

    Handbook of Vascular Biometrics

    Get PDF

    Single-Sample Finger Vein Recognition via Competitive and Progressive Sparse Representation

    Get PDF
    As an emerging biometric technology, finger vein recognition has attracted much attention in recent years. However, single-sample recognition is a practical and longstanding challenge in this field, referring to only one finger vein image per class in the training set. In single-sample finger vein recognition, the illumination variations under low contrast and the lack of information of intra-class variations severely affect the recognition performance. Despite of its high robustness against noise and illumination variations, sparse representation has rarely been explored for single-sample finger vein recognition. Therefore, in this paper, we focus on developing a new approach called Progressive Sparse Representation Classification (PSRC) to address the challenging issue of single-sample finger vein recognition. Firstly, as residual may become too large under the scenario of single-sample finger vein recognition, we propose a progressive strategy for representation refinement of SRC. Secondly, to adaptively optimize progressions, a progressive index called Max Energy Residual Index (MERI) is defined as the guidance. Furthermore, we extend PSRC to bimodal biometrics and propose a Competitive PSRC (C-PSRC) fusion approach. The C-PSRC creates more discriminative fused sample and fusion dictionary by comparing residual errors of different modalities. By comparing with several state-of-the-art methods on three finger vein benchmarks, the superiority of the proposed PSRC and C-PSRC is clearly demonstrated

    An overview of touchless 2D fingerprint recognition

    Get PDF
    Touchless fingerprint recognition represents a rapidly growing field of research which has been studied for more than a decade. Through a touchless acquisition process, many issues of touch-based systems are circumvented, e.g., the presence of latent fingerprints or distortions caused by pressing fingers on a sensor surface. However, touchless fingerprint recognition systems reveal new challenges. In particular, a reliable detection and focusing of a presented finger as well as an appropriate preprocessing of the acquired finger image represent the most crucial tasks. Also, further issues, e.g., interoperability between touchless and touch-based fingerprints or presentation attack detection, are currently investigated by different research groups. Many works have been proposed so far to put touchless fingerprint recognition into practice. Published approaches range from self identification scenarios with commodity devices, e.g., smartphones, to high performance on-the-move deployments paving the way for new fingerprint recognition application scenarios.This work summarizes the state-of-the-art in the field of touchless 2D fingerprint recognition at each stage of the recognition process. Additionally, technical considerations and trade-offs of the presented methods are discussed along with open issues and challenges. An overview of available research resources completes the work

    Finger Vein Recognition with Hybrid Deep Learning Approach

    Get PDF
    Finger vein biometrics is an identification technique based on the vein patterns in fingers, and it has the benefit of being difficult to counterfeit. Due to its high level of security, durability, and performance history, finger vein recognition captures our attention as one of the most significant authentication methods available today. Using a mixed deep learning approach, we investigate the challenge of identifying the finger vein sensor model. Thus far, we use Traditional LSTM architectures for this biometric modality. This work also suggests a brand-new hybrid architecture that shines due to its compactness and a merging with the LSMT layer to be taught. In the experiment, original samples as well as the region of interest data from eight freely available FV-USM datasets are employed. The standard LSTM-based strategy is preferable and produced better outcomes, as seen by the comparison with the earlier approaches. Moreover, the results show that the hybrid CNN and LSTM networks may be used to improve vein detection performance

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    Method for estimating potential recognition capacity of texture-based biometrics

    Get PDF
    When adopting an image-based biometric system, an important factor for consideration is its potential recognition capacity, since it not only defines the potential number of individuals likely to be identifiable, but also serves as a useful figure-of-merit for performance. Based on block transform coding commonly used for image compression, this study presents a method to enable coarse estimation of potential recognition capacity for texture-based biometrics. Essentially, each image block is treated as a constituent biometric component, and image texture contained in each block is binary coded to represent the corresponding texture class. The statistical variability among the binary values assigned to corresponding blocks is then exploited for estimation of potential recognition capacity. In particular, methodologies are proposed to determine appropriate image partition based on separation between texture classes and informativeness of an image block based on statistical randomness. By applying the proposed method to a commercial fingerprint system and a bespoke hand vein system, the potential recognition capacity is estimated to around 10^36 for a fingerprint area of 25  mm^2 which is in good agreement with the estimates reported, and around 10^15 for a hand vein area of 2268  mm^2 which has not been reported before
    corecore