524 research outputs found

    Ensemble of Loss Functions to Improve Generalizability of Deep Metric Learning methods

    Full text link
    Deep Metric Learning (DML) learns a non-linear semantic embedding from input data that brings similar pairs together while keeps dissimilar data away from each other. To this end, many different methods are proposed in the last decade with promising results in various applications. The success of a DML algorithm greatly depends on its loss function. However, no loss function is perfect, and it deals only with some aspects of an optimal similarity embedding. Besides, the generalizability of the DML on unseen categories during the test stage is an important matter that is not considered by existing loss functions. To address these challenges, we propose novel approaches to combine different losses built on top of a shared deep feature extractor. The proposed ensemble of losses enforces the deep model to extract features that are consistent with all losses. Since the selected losses are diverse and each emphasizes different aspects of an optimal semantic embedding, our effective combining methods yield a considerable improvement over any individual loss and generalize well on unseen categories. Here, there is no limitation in choosing loss functions, and our methods can work with any set of existing ones. Besides, they can optimize each loss function as well as its weight in an end-to-end paradigm with no need to adjust any hyper-parameter. We evaluate our methods on some popular datasets from the machine vision domain in conventional Zero-Shot-Learning (ZSL) settings. The results are very encouraging and show that our methods outperform all baseline losses by a large margin in all datasets.Comment: 27 pages, 12 figure

    Shared Microexponents: A Little Shifting Goes a Long Way

    Full text link
    This paper introduces Block Data Representations (BDR), a framework for exploring and evaluating a wide spectrum of narrow-precision formats for deep learning. It enables comparison of popular quantization standards, and through BDR, new formats based on shared microexponents (MX) are identified, which outperform other state-of-the-art quantization approaches, including narrow-precision floating-point and block floating-point. MX utilizes multiple levels of quantization scaling with ultra-fine scaling factors based on shared microexponents in the hardware. The effectiveness of MX is demonstrated on real-world models including large-scale generative pretraining and inferencing, and production-scale recommendation systems

    Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

    Full text link
    The rising popularity of intelligent mobile devices and the daunting computational cost of deep learning-based models call for efficient and accurate on-device inference schemes. We propose a quantization scheme that allows inference to be carried out using integer-only arithmetic, which can be implemented more efficiently than floating point inference on commonly available integer-only hardware. We also co-design a training procedure to preserve end-to-end model accuracy post quantization. As a result, the proposed quantization scheme improves the tradeoff between accuracy and on-device latency. The improvements are significant even on MobileNets, a model family known for run-time efficiency, and are demonstrated in ImageNet classification and COCO detection on popular CPUs.Comment: 14 pages, 12 figure

    DeepPermNet: Visual Permutation Learning

    Full text link
    We present a principled approach to uncover the structure of visual data by solving a novel deep learning task coined visual permutation learning. The goal of this task is to find the permutation that recovers the structure of data from shuffled versions of it. In the case of natural images, this task boils down to recovering the original image from patches shuffled by an unknown permutation matrix. Unfortunately, permutation matrices are discrete, thereby posing difficulties for gradient-based methods. To this end, we resort to a continuous approximation of these matrices using doubly-stochastic matrices which we generate from standard CNN predictions using Sinkhorn iterations. Unrolling these iterations in a Sinkhorn network layer, we propose DeepPermNet, an end-to-end CNN model for this task. The utility of DeepPermNet is demonstrated on two challenging computer vision problems, namely, (i) relative attributes learning and (ii) self-supervised representation learning. Our results show state-of-the-art performance on the Public Figures and OSR benchmarks for (i) and on the classification and segmentation tasks on the PASCAL VOC dataset for (ii).Comment: Accepted in IEEE International Conference on Computer Vision and Pattern Recognition CVPR 201

    The Euclidean Space is Evil: Hyperbolic Attribute Editing for Few-shot Image Generation

    Full text link
    Few-shot image generation is a challenging task since it aims to generate diverse new images for an unseen category with only a few images. Existing methods suffer from the trade-off between the quality and diversity of generated images. To tackle this problem, we propose Hyperbolic Attribute Editing (HAE), a simple yet effective method. Unlike other methods that work in Euclidean space, HAE captures the hierarchy among images using data from seen categories in hyperbolic space. Given a well-trained HAE, images of unseen categories can be generated by moving the latent code of a given image toward any meaningful directions in the Poincar\'e disk with a fixing radius. Most importantly, the hyperbolic space allows us to control the semantic diversity of the generated images by setting different radii in the disk. Extensive experiments and visualizations demonstrate that HAE is capable of not only generating images with promising quality and diversity using limited data but achieving a highly controllable and interpretable editing process

    Entropy-driven Sampling and Training Scheme for Conditional Diffusion Generation

    Full text link
    Denoising Diffusion Probabilistic Model (DDPM) is able to make flexible conditional image generation from prior noise to real data, by introducing an independent noise-aware classifier to provide conditional gradient guidance at each time step of denoising process. However, due to the ability of classifier to easily discriminate an incompletely generated image only with high-level structure, the gradient, which is a kind of class information guidance, tends to vanish early, leading to the collapse from conditional generation process into the unconditional process. To address this problem, we propose two simple but effective approaches from two perspectives. For sampling procedure, we introduce the entropy of predicted distribution as the measure of guidance vanishing level and propose an entropy-aware scaling method to adaptively recover the conditional semantic guidance. For training stage, we propose the entropy-aware optimization objectives to alleviate the overconfident prediction for noisy data.On ImageNet1000 256x256, with our proposed sampling scheme and trained classifier, the pretrained conditional and unconditional DDPM model can achieve 10.89% (4.59 to 4.09) and 43.5% (12 to 6.78) FID improvement respectively. The code is available at https://github.com/ZGCTroy/ED-DPM.Comment: 24 pages, 8 figure
    • …
    corecore