5,859 research outputs found

    Fine-graind Image Classification via Combining Vision and Language

    Full text link
    Fine-grained image classification is a challenging task due to the large intra-class variance and small inter-class variance, aiming at recognizing hundreds of sub-categories belonging to the same basic-level category. Most existing fine-grained image classification methods generally learn part detection models to obtain the semantic parts for better classification accuracy. Despite achieving promising results, these methods mainly have two limitations: (1) not all the parts which obtained through the part detection models are beneficial and indispensable for classification, and (2) fine-grained image classification requires more detailed visual descriptions which could not be provided by the part locations or attribute annotations. For addressing the above two limitations, this paper proposes the two-stream model combining vision and language (CVL) for learning latent semantic representations. The vision stream learns deep representations from the original visual information via deep convolutional neural network. The language stream utilizes the natural language descriptions which could point out the discriminative parts or characteristics for each image, and provides a flexible and compact way of encoding the salient visual aspects for distinguishing sub-categories. Since the two streams are complementary, combining the two streams can further achieves better classification accuracy. Comparing with 12 state-of-the-art methods on the widely used CUB-200-2011 dataset for fine-grained image classification, the experimental results demonstrate our CVL approach achieves the best performance.Comment: 9 pages, to appear in CVPR 201

    Incorporating Intra-Class Variance to Fine-Grained Visual Recognition

    Full text link
    Fine-grained visual recognition aims to capture discriminative characteristics amongst visually similar categories. The state-of-the-art research work has significantly improved the fine-grained recognition performance by deep metric learning using triplet network. However, the impact of intra-category variance on the performance of recognition and robust feature representation has not been well studied. In this paper, we propose to leverage intra-class variance in metric learning of triplet network to improve the performance of fine-grained recognition. Through partitioning training images within each category into a few groups, we form the triplet samples across different categories as well as different groups, which is called Group Sensitive TRiplet Sampling (GS-TRS). Accordingly, the triplet loss function is strengthened by incorporating intra-class variance with GS-TRS, which may contribute to the optimization objective of triplet network. Extensive experiments over benchmark datasets CompCar and VehicleID show that the proposed GS-TRS has significantly outperformed state-of-the-art approaches in both classification and retrieval tasks.Comment: 6 pages, 5 figure

    Fine-grained Categorization and Dataset Bootstrapping using Deep Metric Learning with Humans in the Loop

    Full text link
    Existing fine-grained visual categorization methods often suffer from three challenges: lack of training data, large number of fine-grained categories, and high intraclass vs. low inter-class variance. In this work we propose a generic iterative framework for fine-grained categorization and dataset bootstrapping that handles these three challenges. Using deep metric learning with humans in the loop, we learn a low dimensional feature embedding with anchor points on manifolds for each category. These anchor points capture intra-class variances and remain discriminative between classes. In each round, images with high confidence scores from our model are sent to humans for labeling. By comparing with exemplar images, labelers mark each candidate image as either a "true positive" or a "false positive". True positives are added into our current dataset and false positives are regarded as "hard negatives" for our metric learning model. Then the model is retrained with an expanded dataset and hard negatives for the next round. To demonstrate the effectiveness of the proposed framework, we bootstrap a fine-grained flower dataset with 620 categories from Instagram images. The proposed deep metric learning scheme is evaluated on both our dataset and the CUB-200-2001 Birds dataset. Experimental evaluations show significant performance gain using dataset bootstrapping and demonstrate state-of-the-art results achieved by the proposed deep metric learning methods.Comment: 10 pages, 9 figures, CVPR 201
    • …
    corecore