12,093 research outputs found

    Temporal Attention-Gated Model for Robust Sequence Classification

    Full text link
    Typical techniques for sequence classification are designed for well-segmented sequences which have been edited to remove noisy or irrelevant parts. Therefore, such methods cannot be easily applied on noisy sequences expected in real-world applications. In this paper, we present the Temporal Attention-Gated Model (TAGM) which integrates ideas from attention models and gated recurrent networks to better deal with noisy or unsegmented sequences. Specifically, we extend the concept of attention model to measure the relevance of each observation (time step) of a sequence. We then use a novel gated recurrent network to learn the hidden representation for the final prediction. An important advantage of our approach is interpretability since the temporal attention weights provide a meaningful value for the salience of each time step in the sequence. We demonstrate the merits of our TAGM approach, both for prediction accuracy and interpretability, on three different tasks: spoken digit recognition, text-based sentiment analysis and visual event recognition.Comment: Accepted by CVPR 201

    Molding CNNs for text: non-linear, non-consecutive convolutions

    Full text link
    The success of deep learning often derives from well-chosen operational building blocks. In this work, we revise the temporal convolution operation in CNNs to better adapt it to text processing. Instead of concatenating word representations, we appeal to tensor algebra and use low-rank n-gram tensors to directly exploit interactions between words already at the convolution stage. Moreover, we extend the n-gram convolution to non-consecutive words to recognize patterns with intervening words. Through a combination of low-rank tensors, and pattern weighting, we can efficiently evaluate the resulting convolution operation via dynamic programming. We test the resulting architecture on standard sentiment classification and news categorization tasks. Our model achieves state-of-the-art performance both in terms of accuracy and training speed. For instance, we obtain 51.2% accuracy on the fine-grained sentiment classification task

    Learning Word Representations with Hierarchical Sparse Coding

    Full text link
    We propose a new method for learning word representations using hierarchical regularization in sparse coding inspired by the linguistic study of word meanings. We show an efficient learning algorithm based on stochastic proximal methods that is significantly faster than previous approaches, making it possible to perform hierarchical sparse coding on a corpus of billions of word tokens. Experiments on various benchmark tasks---word similarity ranking, analogies, sentence completion, and sentiment analysis---demonstrate that the method outperforms or is competitive with state-of-the-art methods. Our word representations are available at \url{http://www.ark.cs.cmu.edu/dyogatam/wordvecs/}

    Word Affect Intensities

    Full text link
    Words often convey affect -- emotions, feelings, and attitudes. Lexicons of word-affect association have applications in automatic emotion analysis and natural language generation. However, existing lexicons indicate only coarse categories of affect association. Here, for the first time, we create an affect intensity lexicon with real-valued scores of association. We use a technique called best-worst scaling that improves annotation consistency and obtains reliable fine-grained scores. The lexicon includes terms common from both general English and terms specific to social media communications. It has close to 6,000 entries for four basic emotions. We will be adding entries for other affect dimensions shortly

    Deep Memory Networks for Attitude Identification

    Full text link
    We consider the task of identifying attitudes towards a given set of entities from text. Conventionally, this task is decomposed into two separate subtasks: target detection that identifies whether each entity is mentioned in the text, either explicitly or implicitly, and polarity classification that classifies the exact sentiment towards an identified entity (the target) into positive, negative, or neutral. Instead, we show that attitude identification can be solved with an end-to-end machine learning architecture, in which the two subtasks are interleaved by a deep memory network. In this way, signals produced in target detection provide clues for polarity classification, and reversely, the predicted polarity provides feedback to the identification of targets. Moreover, the treatments for the set of targets also influence each other -- the learned representations may share the same semantics for some targets but vary for others. The proposed deep memory network, the AttNet, outperforms methods that do not consider the interactions between the subtasks or those among the targets, including conventional machine learning methods and the state-of-the-art deep learning models.Comment: Accepted to WSDM'1
    corecore