15,505 research outputs found

    WarpNet: Weakly Supervised Matching for Single-view Reconstruction

    Full text link
    We present an approach to matching images of objects in fine-grained datasets without using part annotations, with an application to the challenging problem of weakly supervised single-view reconstruction. This is in contrast to prior works that require part annotations, since matching objects across class and pose variations is challenging with appearance features alone. We overcome this challenge through a novel deep learning architecture, WarpNet, that aligns an object in one image with a different object in another. We exploit the structure of the fine-grained dataset to create artificial data for training this network in an unsupervised-discriminative learning approach. The output of the network acts as a spatial prior that allows generalization at test time to match real images across variations in appearance, viewpoint and articulation. On the CUB-200-2011 dataset of bird categories, we improve the AP over an appearance-only network by 13.6%. We further demonstrate that our WarpNet matches, together with the structure of fine-grained datasets, allow single-view reconstructions with quality comparable to using annotated point correspondences.Comment: to appear in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 201

    Fine-grained Discriminative Localization via Saliency-guided Faster R-CNN

    Full text link
    Discriminative localization is essential for fine-grained image classification task, which devotes to recognizing hundreds of subcategories in the same basic-level category. Reflecting on discriminative regions of objects, key differences among different subcategories are subtle and local. Existing methods generally adopt a two-stage learning framework: The first stage is to localize the discriminative regions of objects, and the second is to encode the discriminative features for training classifiers. However, these methods generally have two limitations: (1) Separation of the two-stage learning is time-consuming. (2) Dependence on object and parts annotations for discriminative localization learning leads to heavily labor-consuming labeling. It is highly challenging to address these two important limitations simultaneously. Existing methods only focus on one of them. Therefore, this paper proposes the discriminative localization approach via saliency-guided Faster R-CNN to address the above two limitations at the same time, and our main novelties and advantages are: (1) End-to-end network based on Faster R-CNN is designed to simultaneously localize discriminative regions and encode discriminative features, which accelerates classification speed. (2) Saliency-guided localization learning is proposed to localize the discriminative region automatically, avoiding labor-consuming labeling. Both are jointly employed to simultaneously accelerate classification speed and eliminate dependence on object and parts annotations. Comparing with the state-of-the-art methods on the widely-used CUB-200-2011 dataset, our approach achieves both the best classification accuracy and efficiency.Comment: 9 pages, to appear in ACM MM 201
    • …
    corecore