6 research outputs found

    Weakly- and Semi-supervised Evidence Extraction

    Full text link
    For many prediction tasks, stakeholders desire not only predictions but also supporting evidence that a human can use to verify its correctness. However, in practice, additional annotations marking supporting evidence may only be available for a minority of training examples (if available at all). In this paper, we propose new methods to combine few evidence annotations (strong semi-supervision) with abundant document-level labels (weak supervision) for the task of evidence extraction. Evaluating on two classification tasks that feature evidence annotations, we find that our methods outperform baselines adapted from the interpretability literature to our task. Our approach yields substantial gains with as few as hundred evidence annotations. Code and datasets to reproduce our work are available at https://github.com/danishpruthi/evidence-extraction.Comment: Accepted to the Findings of EMNLP 2020, to be presented at BlackBoxNL

    Explain and Predict, and then Predict Again

    Full text link
    A desirable property of learning systems is to be both effective and interpretable. Towards this goal, recent models have been proposed that first generate an extractive explanation from the input text and then generate a prediction on just the explanation called explain-then-predict models. These models primarily consider the task input as a supervision signal in learning an extractive explanation and do not effectively integrate rationales data as an additional inductive bias to improve task performance. We propose a novel yet simple approach ExPred, that uses multi-task learning in the explanation generation phase effectively trading-off explanation and prediction losses. And then we use another prediction network on just the extracted explanations for optimizing the task performance. We conduct an extensive evaluation of our approach on three diverse language datasets -- fact verification, sentiment classification, and QA -- and find that we substantially outperform existing approaches.Comment: Accepted in the WSDM 202

    Detecting and Reducing Bias in a High Stakes Domain

    Full text link
    Gang-involved youth in cities such as Chicago sometimes post on social media to express their aggression towards rival gangs and previous research has demonstrated that a deep learning approach can predict aggression and loss in posts. To address the possibility of bias in this sensitive application, we developed an approach to systematically interpret the state of the art model. We found, surprisingly, that it frequently bases its predictions on stop words such as "a" or "on", an approach that could harm social media users who have no aggressive intentions. To tackle this bias, domain experts annotated the rationales, highlighting words that explain why a tweet is labeled as "aggression". These new annotations enable us to quantitatively measure how justified the model predictions are, and build models that drastically reduce bias. Our study shows that in high stake scenarios, accuracy alone cannot guarantee a good system and we need new evaluation methods

    BERTology Meets Biology: Interpreting Attention in Protein Language Models

    Full text link
    Transformer architectures have proven to learn useful representations for protein classification and generation tasks. However, these representations present challenges in interpretability. In this work, we demonstrate a set of methods for analyzing protein Transformer models through the lens of attention. We show that attention: (1) captures the folding structure of proteins, connecting amino acids that are far apart in the underlying sequence, but spatially close in the three-dimensional structure, (2) targets binding sites, a key functional component of proteins, and (3) focuses on progressively more complex biophysical properties with increasing layer depth. We find this behavior to be consistent across three Transformer architectures (BERT, ALBERT, XLNet) and two distinct protein datasets. We also present a three-dimensional visualization of the interaction between attention and protein structure. Code for visualization and analysis is available at https://github.com/salesforce/provis.Comment: To appear in ICLR 202

    The Out-of-Distribution Problem in Explainability and Search Methods for Feature Importance Explanations

    Full text link
    Feature importance (FI) estimates are a popular form of explanation, and they are commonly created and evaluated by computing the change in model confidence caused by removing certain input features at test time. For example, in the standard Sufficiency metric, only the top-k most important tokens are kept. In this paper, we study several under-explored dimensions of FI explanations, providing conceptual and empirical improvements for this form of explanation. First, we advance a new argument for why it can be problematic to remove features from an input when creating or evaluating explanations: the fact that these counterfactual inputs are out-of-distribution (OOD) to models implies that the resulting explanations are socially misaligned. The crux of the problem is that the model prior and random weight initialization influence the explanations (and explanation metrics) in unintended ways. To resolve this issue, we propose a simple alteration to the model training process, which results in more socially aligned explanations and metrics. Second, we compare among five approaches for removing features from model inputs. We find that some methods produce more OOD counterfactuals than others, and we make recommendations for selecting a feature-replacement function. Finally, we introduce four search-based methods for identifying FI explanations and compare them to strong baselines, including LIME, Anchors, and Integrated Gradients. Through experiments with six diverse text classification datasets, we find that the only method that consistently outperforms random search is a Parallel Local Search (PLS) that we introduce. Improvements over the second-best method are as large as 5.4 points for Sufficiency and 17 points for Comprehensiveness. All supporting code for experiments in this paper is publicly available at https://github.com/peterbhase/ExplanationSearch.Comment: NeurIPS 2021 (25 pages

    ERASER: A Benchmark to Evaluate Rationalized NLP Models

    Full text link
    State-of-the-art models in NLP are now predominantly based on deep neural networks that are opaque in terms of how they come to make predictions. This limitation has increased interest in designing more interpretable deep models for NLP that reveal the `reasoning' behind model outputs. But work in this direction has been conducted on different datasets and tasks with correspondingly unique aims and metrics; this makes it difficult to track progress. We propose the Evaluating Rationales And Simple English Reasoning (ERASER) benchmark to advance research on interpretable models in NLP. This benchmark comprises multiple datasets and tasks for which human annotations of "rationales" (supporting evidence) have been collected. We propose several metrics that aim to capture how well the rationales provided by models align with human rationales, and also how faithful these rationales are (i.e., the degree to which provided rationales influenced the corresponding predictions). Our hope is that releasing this benchmark facilitates progress on designing more interpretable NLP systems. The benchmark, code, and documentation are available at https://www.eraserbenchmark.com/Comment: Accepted as a long paper to ACL2020 Website and leaderboard available at http://www.eraserbenchmark.com/ Code available at https://github.com/jayded/eraserbenchmar
    corecore