18 research outputs found

    Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification

    Get PDF
    Effective transperineal ultrasound image guidance in prostate external beam radiotherapy requires consistent alignment between probe and prostate at each session during patient set-up. Probe placement and ultrasound image interpretation are manual tasks contingent upon operator skill, leading to interoperator uncertainties that degrade radiotherapy precision. We demonstrate a method for ensuring accurate probe placement through joint classification of images and probe position data. Using a multi-input multi-task algorithm, spatial coordinate data from an optically tracked ultrasound probe is combined with an image classifier using a recurrent neural network to generate two sets of predictions in real-time. The first set identifies relevant prostate anatomy visible in the field of view using the classes: outside prostate, prostate periphery, prostate centre. The second set recommends a probe angular adjustment to achieve alignment between the probe and prostate centre with the classes: move left, move right, stop. The algorithm was trained and tested on 9,743 clinical images from 61 treatment sessions across 32 patients. We evaluated classification accuracy against class labels derived from three experienced observers at 2/3 and 3/3 agreement thresholds. For images with unanimous consensus between observers, anatomical classification accuracy was 97.2% and probe adjustment accuracy was 94.9%. The algorithm identified optimal probe alignment within a mean (standard deviation) range of 3.7° (1.2°) from angle labels with full observer consensus, comparable to the 2.8° (2.6°) mean interobserver range. We propose such an algorithm could assist radiotherapy practitioners with limited experience of ultrasound image interpretation by providing effective real-time feedback during patient set-up

    Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification

    Get PDF
    Effective transperineal ultrasound image guidance in prostate external beam radiotherapy requires consistent alignment between probe and prostate at each session during patient set-up. Probe placement and ultrasound image inter-pretation are manual tasks contingent upon operator skill, leading to interoperator uncertainties that degrade radiotherapy precision. We demonstrate a method for ensuring accurate probe placement through joint classification of images and probe position data. Using a multi-input multi-task algorithm, spatial coordinate data from an optically tracked ultrasound probe is combined with an image clas-sifier using a recurrent neural network to generate two sets of predictions in real-time. The first set identifies relevant prostate anatomy visible in the field of view using the classes: outside prostate, prostate periphery, prostate centre. The second set recommends a probe angular adjustment to achieve alignment between the probe and prostate centre with the classes: move left, move right, stop. The algo-rithm was trained and tested on 9,743 clinical images from 61 treatment sessions across 32 patients. We evaluated classification accuracy against class labels de-rived from three experienced observers at 2/3 and 3/3 agreement thresholds. For images with unanimous consensus between observers, anatomical classification accuracy was 97.2% and probe adjustment accuracy was 94.9%. The algorithm identified optimal probe alignment within a mean (standard deviation) range of 3.7∘^{\circ} (1.2∘^{\circ}) from angle labels with full observer consensus, comparable to the 2.8∘^{\circ} (2.6∘^{\circ}) mean interobserver range. We propose such an algorithm could assist ra-diotherapy practitioners with limited experience of ultrasound image interpreta-tion by providing effective real-time feedback during patient set-up.Comment: Accepted to MICCAI 202

    Automatic slice segmentation of intraoperative transrectal ultrasound images using convolutional neural networks

    Get PDF
    Clinically important targets for ultrasound-guided prostate biopsy and prostate cancer focal therapy can be defined on MRI. However, localizing these targets on transrectal ultrasound (TRUS) remains challenging. Automatic segmentation of the prostate on intraoperative TRUS images is an important step towards automating most MRI-TRUS image registration workflows so that they become more acceptable in clinical practice. In this paper, we propose a deep learning method using convolutional neural networks (CNNs) for automatic prostate segmentation in 2D TRUS slices and 3D TRUS volumes. The method was evaluated on a clinical cohort of 110 patients who underwent TRUS-guided targeted biopsy. Segmentation accuracy was measured by comparison to manual prostate segmentation in 2D on 4055 TRUS images and in 3D on the corresponding 110 volumes, in a 10-fold patient-level cross validation. The proposed method achieved a mean 2D Dice score coefficient (DSC) of 0.91±0.12 and a mean absolute boundary segmentation error of 1.23±1.46mm. Dice scores (0.91±0.04) were also calculated for 3D volumes on the patient level. These suggest a promising approach to aid a wide range of TRUS-guided prostate cancer procedures needing multimodality data fusion

    Integration of spatial information in convolutional neural networks for automatic segmentation of intraoperative transrectal ultrasound images

    Get PDF
    Image guidance systems that register scans of the prostate obtained using transrectal ultrasound (TRUS) and magnetic resonance imaging are becoming increasingly popular as a means of enabling tumor-targeted prostate cancer biopsy and treatment. However, intraoperative segmentation of TRUS images to define the three-dimensional (3-D) geometry of the prostate remains a necessary task in existing guidance systems, which often require significant manual interaction and are subject to interoperator variability. Therefore, automating this step would lead to more acceptable clinical workflows and greater standardization between different operators and hospitals. In this work, a convolutional neural network (CNN) for automatically segmenting the prostate in two-dimensional (2-D) TRUS slices of a 3-D TRUS volume was developed and tested. The network was designed to be able to incorporate 3-D spatial information by taking one or more TRUS slices neighboring each slice to be segmented as input, in addition to these slices. The accuracy of the CNN was evaluated on data from a cohort of 109 patients who had undergone TRUS-guided targeted biopsy, (a total of 4034 2-D slices). The segmentation accuracy was measured by calculating 2-D and 3-D Dice similarity coefficients, on the 2-D images and corresponding 3-D volumes, respectively, as well as the 2-D boundary distances, using a 10-fold patient-level cross-validation experiment. However, incorporating neighboring slices did not improve the segmentation performance in five out of six experiment results, which include varying the number of neighboring slices from 1 to 3 at either side. The up-sampling shortcuts reduced the overall training time of the network, 161 min compared with 253 min without the architectural addition
    corecore