31,705 research outputs found

    Findings of the Third Workshop on Neural Generation and Translation

    Get PDF
    This document describes the findings of the Third Workshop on Neural Generation and Translation, held in concert with the annual conference of the Empirical Methods in Natural Language Processing (EMNLP 2019). First, we summarize the research trends of papers presented in the proceedings. Second, we describe the results of the two shared tasks 1) efficient neural machine translation (NMT) where participants were tasked with creating NMT systems that are both accurate and efficient, and 2) document-level generation and translation (DGT) where participants were tasked with developing systems that generate summaries from structured data, potentially with assistance from text in another language.Comment: Fixed the metadata (author list

    Referenceless Quality Estimation for Natural Language Generation

    Full text link
    Traditional automatic evaluation measures for natural language generation (NLG) use costly human-authored references to estimate the quality of a system output. In this paper, we propose a referenceless quality estimation (QE) approach based on recurrent neural networks, which predicts a quality score for a NLG system output by comparing it to the source meaning representation only. Our method outperforms traditional metrics and a constant baseline in most respects; we also show that synthetic data helps to increase correlation results by 21% compared to the base system. Our results are comparable to results obtained in similar QE tasks despite the more challenging setting.Comment: Accepted as a regular paper to 1st Workshop on Learning to Generate Natural Language (LGNL), Sydney, 10 August 201

    Multilingual Unsupervised Sentence Simplification

    Full text link
    Progress in Sentence Simplification has been hindered by the lack of supervised data, particularly in languages other than English. Previous work has aligned sentences from original and simplified corpora such as English Wikipedia and Simple English Wikipedia, but this limits corpus size, domain, and language. In this work, we propose using unsupervised mining techniques to automatically create training corpora for simplification in multiple languages from raw Common Crawl web data. When coupled with a controllable generation mechanism that can flexibly adjust attributes such as length and lexical complexity, these mined paraphrase corpora can be used to train simplification systems in any language. We further incorporate multilingual unsupervised pretraining methods to create even stronger models and show that by training on mined data rather than supervised corpora, we outperform the previous best results. We evaluate our approach on English, French, and Spanish simplification benchmarks and reach state-of-the-art performance with a totally unsupervised approach. We will release our models and code to mine the data in any language included in Common Crawl

    Neural Machine Translation into Language Varieties

    Full text link
    Both research and commercial machine translation have so far neglected the importance of properly handling the spelling, lexical and grammar divergences occurring among language varieties. Notable cases are standard national varieties such as Brazilian and European Portuguese, and Canadian and European French, which popular online machine translation services are not keeping distinct. We show that an evident side effect of modeling such varieties as unique classes is the generation of inconsistent translations. In this work, we investigate the problem of training neural machine translation from English to specific pairs of language varieties, assuming both labeled and unlabeled parallel texts, and low-resource conditions. We report experiments from English to two pairs of dialects, EuropeanBrazilian Portuguese and European-Canadian French, and two pairs of standardized varieties, Croatian-Serbian and Indonesian-Malay. We show significant BLEU score improvements over baseline systems when translation into similar languages is learned as a multilingual task with shared representations.Comment: Published at EMNLP 2018: third conference on machine translation (WMT 2018

    Machine translation evaluation resources and methods: a survey

    Get PDF
    We introduce the Machine Translation (MT) evaluation survey that contains both manual and automatic evaluation methods. The traditional human evaluation criteria mainly include the intelligibility, fidelity, fluency, adequacy, comprehension, and informativeness. The advanced human assessments include task-oriented measures, post-editing, segment ranking, and extended criteriea, etc. We classify the automatic evaluation methods into two categories, including lexical similarity scenario and linguistic features application. The lexical similarity methods contain edit distance, precision, recall, F-measure, and word order. The linguistic features can be divided into syntactic features and semantic features respectively. The syntactic features include part of speech tag, phrase types and sentence structures, and the semantic features include named entity, synonyms, textual entailment, paraphrase, semantic roles, and language models. The deep learning models for evaluation are very newly proposed. Subsequently, we also introduce the evaluation methods for MT evaluation including different correlation scores, and the recent quality estimation (QE) tasks for MT. This paper differs from the existing works\cite {GALEprogram2009, EuroMatrixProject2007} from several aspects, by introducing some recent development of MT evaluation measures, the different classifications from manual to automatic evaluation measures, the introduction of recent QE tasks of MT, and the concise construction of the content

    Latent Variable Model for Multi-modal Translation

    Get PDF
    In this work, we propose to model the interaction between visual and textual features for multi-modal neural machine translation (MMT) through a latent variable model. This latent variable can be seen as a multi-modal stochastic embedding of an image and its description in a foreign language. It is used in a target-language decoder and also to predict image features. Importantly, our model formulation utilises visual and textual inputs during training but does not require that images be available at test time. We show that our latent variable MMT formulation improves considerably over strong baselines, including a multi-task learning approach (Elliott and K\'ad\'ar, 2017) and a conditional variational auto-encoder approach (Toyama et al., 2016). Finally, we show improvements due to (i) predicting image features in addition to only conditioning on them, (ii) imposing a constraint on the minimum amount of information encoded in the latent variable, and (iii) by training on additional target-language image descriptions (i.e. synthetic data).Comment: Paper accepted at ACL 2019. Contains 8 pages (11 including references, 13 including appendix), 6 figure
    corecore