10,253 research outputs found

    Geodesic-Preserving Polygon Simplification

    Full text link
    Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-to-describe linear-time method to replace an input polygon P\mathcal{P} by a polygon P′\mathcal{P}' such that (1) P′\mathcal{P}' contains P\mathcal{P}, (2) P′\mathcal{P}' has its reflex vertices at the same positions as P\mathcal{P}, and (3) the number of vertices of P′\mathcal{P}' is linear in the number of reflex vertices. Since the solutions of numerous problems on polygons (including shortest paths, geodesic hulls, separating point sets, and Voronoi diagrams) are equivalent for both P\mathcal{P} and P′\mathcal{P}', our algorithm can be used as a preprocessing step for several algorithms and makes their running time dependent on the number of reflex vertices rather than on the size of P\mathcal{P}

    Approximating the Maximum Overlap of Polygons under Translation

    Full text link
    Let PP and QQ be two simple polygons in the plane of total complexity nn, each of which can be decomposed into at most kk convex parts. We present an (1−ε)(1-\varepsilon)-approximation algorithm, for finding the translation of QQ, which maximizes its area of overlap with PP. Our algorithm runs in O(cn)O(c n) time, where cc is a constant that depends only on kk and ε\varepsilon. This suggest that for polygons that are "close" to being convex, the problem can be solved (approximately), in near linear time

    Computing a rectilinear shortest path amid splinegons in plane

    Full text link
    We reduce the problem of computing a rectilinear shortest path between two given points s and t in the splinegonal domain \calS to the problem of computing a rectilinear shortest path between two points in the polygonal domain. As part of this, we define a polygonal domain \calP from \calS and transform a rectilinear shortest path computed in \calP to a path between s and t amid splinegon obstacles in \calS. When \calS comprises of h pairwise disjoint splinegons with a total of n vertices, excluding the time to compute a rectilinear shortest path amid polygons in \calP, our reduction algorithm takes O(n + h \lg{n}) time. For the special case of \calS comprising of concave-in splinegons, we have devised another algorithm in which the reduction procedure does not rely on the structures used in the algorithm to compute a rectilinear shortest path in polygonal domain. As part of these, we have characterized few of the properties of rectilinear shortest paths amid splinegons which could be of independent interest

    Toric surface codes and Minkowski sums

    Get PDF
    Toric codes are evaluation codes obtained from an integral convex polytope P⊂RnP \subset \R^n and finite field \F_q. They are, in a sense, a natural extension of Reed-Solomon codes, and have been studied recently by J. Hansen and D. Joyner. In this paper, we obtain upper and lower bounds on the minimum distance of a toric code constructed from a polygon P⊂R2P \subset \R^2 by examining Minkowski sum decompositions of subpolygons of PP. Our results give a simple and unifying explanation of bounds of Hansen and empirical results of Joyner; they also apply to previously unknown cases.Comment: 15 pages, 7 figures; This version contains some minor editorial revisions -- to appear SIAM Journal on Discrete Mathematic

    Covering the Boundary of a Simple Polygon with Geodesic Unit Disks

    Full text link
    We consider the problem of covering the boundary of a simple polygon on n vertices using the minimum number of geodesic unit disks. We present an O(n \log^2 n+k) time 2-approximation algorithm for finding the centers of the disks, with k denoting the number centers found by the algorithm

    Cyclic schedules for r irregularly occurring event

    Get PDF
    Consider r irregular polygons with vertices on some circle. Authors explains how the polygons should be arranged to minimize some criterion function depending on the distances between adjacent vertices. A solution of this problem is given. It is based on a decomposition of the set of all schedules into local regions in which the optimization problem is convex. For the criterion functions minimize the maximum distance and maximize the minimum distance the local optimization problems are related to network flow problems which can be solved efficiently. If the sum of squared distances is to be minimized a locally optimal solution can be found by solving a system of linear equations. For fixed r the global problem is polynomially solvable for all the above-mentioned objective functions. In the general case, however, the global problem is NP-hard
    • …
    corecore