99 research outputs found

    Cryptanalysis with Ternary Difference: Applied to Block Cipher PRESENT

    Get PDF
    Signed difference approach was first introduced by Wang for finding collision in MD5. In this paper we introduce ternary difference approach and present it in 3 symbols. To show its application we combine ternary difference approach with conventional differential cryptanalysis and apply that to cryptanalysis the reduced round PRESENT. We also use ant colony technique to obtain the best differential characteristic. To illustrate the privilege in the result of experiment, we calculate advantage of the attack

    FPGA implementation of metaheuristic optimization algorithm

    Get PDF
    Metaheuristic algorithms are gaining popularity amongst researchers due to their ability to solve nonlinear optimization problems as well as the ability to be adapted to solve a variety of problems. There is a surge of novel metaheuristics proposed recently, however it is uncertain whether they are suitable for FPGA implementation. In addition, there exists a variety of design methodologies to implement metaheuristics upon FPGA which may improve the performance of the implementation. The project begins by researching and identifying metaheuristics which are suitable for FPGA implementation. The selected metaheuristic was the Simulated Kalman Filter (SKF) which proposed an algorithm that was low in complexity and used a small number of steps. Then the Discrete SKF was adapted from the original metaheuristic by rounding all floating-point values to integers as well as setting a fixed Kalman gain of 0.5. The Discrete SKF was then modeled using behavioral modeling to produce the Binary SKF which was then implemented onto FPGA. The design was made modular by producing separate modules that managed different parts of the metaheuristic and Parallel-In-Parallel-Out configuration of ports was also implemented. The Discrete SKF was then simulated on MATLAB meanwhile the Binary SKF was implemented onto FPGA and their performance were measured based on chip utilization, processing speed, and accuracy of results. The Binary SKF produced speed increment of up to 69 times faster than the Discrete SKF simulation

    INCUBATION OF METAHEURISTIC SEARCH ALGORITHMS INTO NOVEL APPLICATION FIELDS

    Get PDF
    Several optimization algorithms have been developed to handle various optimization issues in many fields, capturing the attention of many researchers. Algorithm optimizations are commonly inspired by nature or involve the modification of existing algorithms. So far, the new algorithms are set up and focusing on achieving the desired optimization goal. While this can be useful and efficient in the short term, in the long run, this is not enough as it needs to repeat for any new problem that occurs and maybe in specific difficulties, therefore one algorithm cannot be used for all real-world problems. This dissertation provides three approaches for implementing metaheuristic search (MHS) algorithms in fields that do not directly solve optimization issues. The first approach is to study parametric studies on MHS algorithms that attempt to understand how parameters work in MHS algorithms. In this first direction, we choose the Jaya algorithm, a relatively recent MHS algorithm defined as a method that does not require algorithm-specific control parameters. In this work, we incorporate weights as an extra parameter to test if Jaya’s approach is actually "parameter-free." This algorithm’s performance is evaluated by implementing 12 unconstrained benchmark functions. The results will demonstrate the direct impact of parameter adjustments on algorithm performance. The second approach is to embed the MHS algorithm on the Blockchain Proof of Work (PoW) to deal with the issue of excessive energy consumption, particularly in using bitcoin. This study uses an iterative optimization algorithm to solve the Traveling Salesperson Problem (TSP) as a model problem, which has the same concept as PoW and requires extending the Blockchain with additional blocks. The basic idea behind this research is to increase the tour cost for the best tour found for n blocks, extended by adding one more city as a requirement to include a new block in the Blockchain. The results reveal that the proposed concept can improve the way the current system solves complicated cryptographic problems Furthermore, MHS are implemented in the third direction approach to solving agricultural problems, especially the cocoa flowers pollination. We chose the problem in pollination in cacao flowers since they are distinctive and different from other flowers due to their small size and lack of odor, allowing just a few pollinators to successfully pollinate them, most notably a tiny midge called Forcipomyia Inornatipennis (FP). This concept was then adapted and implemented into an Idle-Metaheuristic for simulating the pollination of cocoa flowers. We analyze how MHS algorithms derived from three well-known methods perform when used to flower pollination problems. Swarm Intelligence Algorithms, Individual Random Search, and Multi-Agent Systems Search are the three methodologies studied here. The results shows that the Multi-Agent System search performs better than other methods. The findings of the three approaches reveal that adopting an MHS algorithms can solve the problem in this study by indirectly solving the optimization problem using the same problem model concept. Furthermore, the researchers concluded that parameter settings in the MHS algorithms are not so difficult to use, and each parameter can be adjusted to solve the real-world issue. This study is expected to encourage other researchers to improve and develop the performance of MHS algorithms used to deal with multiple real-world problems.九州工業大学博士学位論文 学位記番号: 情工博甲第367号 学位授与年月日: 令和4年3月25日1 Introduction|2 Traditional Metaheuristic Search Optimization|3 Parametric Study of Metaheuristic Search Algorithms|4 Embedded Metaheuristic Search Algorithms for Blockchain Proof-of-Work|5 Idle-Metaheuristic for Flower Pollination Simulation|6 Conclusion and Future Works九州工業大学令和3年

    Ant colony optimization on runtime reconfigurable architectures

    Get PDF

    Theoretical Computer Science and Discrete Mathematics

    Get PDF
    This book includes 15 articles published in the Special Issue "Theoretical Computer Science and Discrete Mathematics" of Symmetry (ISSN 2073-8994). This Special Issue is devoted to original and significant contributions to theoretical computer science and discrete mathematics. The aim was to bring together research papers linking different areas of discrete mathematics and theoretical computer science, as well as applications of discrete mathematics to other areas of science and technology. The Special Issue covers topics in discrete mathematics including (but not limited to) graph theory, cryptography, numerical semigroups, discrete optimization, algorithms, and complexity

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    Fractal Analysis

    Get PDF
    Fractal analysis is becoming more and more common in all walks of life. This includes biomedical engineering, steganography and art. Writing one book on all these topics is a very difficult task. For this reason, this book covers only selected topics. Interested readers will find in this book the topics of image compression, groundwater quality, establishing the downscaling and spatio-temporal scale conversion models of NDVI, modelling and optimization of 3T fractional nonlinear generalized magneto-thermoelastic multi-material, algebraic fractals in steganography, strain induced microstructures in metals and much more. The book will definitely be of interest to scientists dealing with fractal analysis, as well as biomedical engineers or IT engineers. I encourage you to view individual chapters

    Wireless multimedia sensor networks, security and key management

    Get PDF
    Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. These mentioned characteristics, challenges, and requirements of designing WMSNs open many research issues and future research directions to develop protocols, algorithms, architectures, devices, and testbeds to maximize the network lifetime while satisfying the quality of service requirements of the various applications. In this thesis dissertation, we outline the design challenges of WMSNs and we give a comprehensive discussion of the proposed architectures and protocols for the different layers of the communication protocol stack for WMSNs along with their open research issues. Also, we conduct a comparison among the existing WMSN hardware and testbeds based on their specifications and features along with complete classification based on their functionalities and capabilities. In addition, we introduce our complete classification for content security and contextual privacy in WSNs. Our focus in this field, after conducting a complete survey in WMSNs and event privacy in sensor networks, and earning the necessary knowledge of programming sensor motes such as Micaz and Stargate and running simulation using NS2, is to design suitable protocols meet the challenging requirements of WMSNs targeting especially the routing and MAC layers, secure the wirelessly exchange of data against external attacks using proper security algorithms: key management and secure routing, defend the network from internal attacks by using a light-weight intrusion detection technique, protect the contextual information from being leaked to unauthorized parties by adapting an event unobservability scheme, and evaluate the performance efficiency and energy consumption of employing the security algorithms over WMSNs
    corecore