8 research outputs found

    A Special Homotopy Continuation Method For A Class of Polynomial Systems

    Full text link
    A special homotopy continuation method, as a combination of the polyhedral homotopy and the linear product homotopy, is proposed for computing all the isolated solutions to a special class of polynomial systems. The root number bound of this method is between the total degree bound and the mixed volume bound and can be easily computed. The new algorithm has been implemented as a program called LPH using C++. Our experiments show its efficiency compared to the polyhedral or other homotopies on such systems. As an application, the algorithm can be used to find witness points on each connected component of a real variety

    Tensor decomposition and homotopy continuation

    Get PDF
    A computationally challenging classical elimination theory problem is to compute polynomials which vanish on the set of tensors of a given rank. By moving away from computing polynomials via elimination theory to computing pseudowitness sets via numerical elimination theory, we develop computational methods for computing ranks and border ranks of tensors along with decompositions. More generally, we present our approach using joins of any collection of irreducible and nondegenerate projective varieties X1,…,Xk⊂PNX_1,\ldots,X_k\subset\mathbb{P}^N defined over C\mathbb{C}. After computing ranks over C\mathbb{C}, we also explore computing real ranks. Various examples are included to demonstrate this numerical algebraic geometric approach.Comment: We have added two examples: A Coppersmith-Winograd tensor, Matrix multiplication with zeros. (26 pages, 1 figure

    Numerical algebraic geometry for model selection and its application to the life sciences

    Full text link
    Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation, and model selection. These are all optimization problems, well-known to be challenging due to non-linearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data is available. Here, we consider polynomial models (e.g., mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometric structures relating models and data, and we demonstrate its utility on examples from cell signaling, synthetic biology, and epidemiology.Comment: References added, additional clarification

    Finding points on real solution components and applications to differential polynomial systems

    No full text
    corecore