60,563 research outputs found

    Firefly Algorithm: Recent Advances and Applications

    Full text link
    Nature-inspired metaheuristic algorithms, especially those based on swarm intelligence, have attracted much attention in the last ten years. Firefly algorithm appeared in about five years ago, its literature has expanded dramatically with diverse applications. In this paper, we will briefly review the fundamentals of firefly algorithm together with a selection of recent publications. Then, we discuss the optimality associated with balancing exploration and exploitation, which is essential for all metaheuristic algorithms. By comparing with intermittent search strategy, we conclude that metaheuristics such as firefly algorithm are better than the optimal intermittent search strategy. We also analyse algorithms and their implications for higher-dimensional optimization problems.Comment: 15 page

    Inheritance-Based Diversity Measures for Explicit Convergence Control in Evolutionary Algorithms

    Full text link
    Diversity is an important factor in evolutionary algorithms to prevent premature convergence towards a single local optimum. In order to maintain diversity throughout the process of evolution, various means exist in literature. We analyze approaches to diversity that (a) have an explicit and quantifiable influence on fitness at the individual level and (b) require no (or very little) additional domain knowledge such as domain-specific distance functions. We also introduce the concept of genealogical diversity in a broader study. We show that employing these approaches can help evolutionary algorithms for global optimization in many cases.Comment: GECCO '18: Genetic and Evolutionary Computation Conference, 2018, Kyoto, Japa

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Ergonomic Chair Design by Fusing Qualitative and Quantitative Criteria using Interactive Genetic Algorithms

    Get PDF
    This paper emphasizes the necessity of formally bringing qualitative and quantitative criteria of ergonomic design together, and provides a novel complementary design framework with this aim. Within this framework, different design criteria are viewed as optimization objectives; and design solutions are iteratively improved through the cooperative efforts of computer and user. The framework is rooted in multi-objective optimization, genetic algorithms and interactive user evaluation. Three different algorithms based on the framework are developed, and tested with an ergonomic chair design problem. The parallel and multi-objective approaches show promising results in fitness convergence, design diversity and user satisfaction metrics

    Computational methods for finding long simple cycles in complex networks

    Get PDF
    © 2017 Elsevier B.V. Detection of long simple cycles in real-world complex networks finds many applications in layout algorithms, information flow modelling, as well as in bioinformatics. In this paper, we propose two computational methods for finding long cycles in real-world networks. The first method is an exact approach based on our own integer linear programming formulation of the problem and a data mining pipeline. This pipeline ensures that the problem is solved as a sequence of integer linear programs. The second method is a multi-start local search heuristic, which combines an initial construction of a long cycle using depth-first search with four different perturbation operators. Our experimental results are presented for social network samples, graphs studied in the network science field, graphs from DIMACS series, and protein-protein interaction networks. These results show that our formulation leads to a significantly more efficient exact approach to solve the problem than a previous formulation. For 14 out of 22 networks, we have found the optimal solutions. The potential of heuristics in this problem is also demonstrated, especially in the context of large-scale problem instances
    • 

    corecore