3,575 research outputs found

    Finding Connected Dense kk-Subgraphs

    Full text link
    Given a connected graph GG on nn vertices and a positive integer knk\le n, a subgraph of GG on kk vertices is called a kk-subgraph in GG. We design combinatorial approximation algorithms for finding a connected kk-subgraph in GG such that its density is at least a factor Ω(max{n2/5,k2/n2})\Omega(\max\{n^{-2/5},k^2/n^2\}) of the density of the densest kk-subgraph in GG (which is not necessarily connected). These particularly provide the first non-trivial approximations for the densest connected kk-subgraph problem on general graphs

    Finding long cycles in graphs

    Full text link
    We analyze the problem of discovering long cycles inside a graph. We propose and test two algorithms for this task. The first one is based on recent advances in statistical mechanics and relies on a message passing procedure. The second follows a more standard Monte Carlo Markov Chain strategy. Special attention is devoted to Hamiltonian cycles of (non-regular) random graphs of minimal connectivity equal to three

    Enumerating Top-k Quasi-Cliques

    Get PDF
    Quasi-cliques are dense incomplete subgraphs of a graph that generalize the notion of cliques. Enumerating quasi-cliques from a graph is a robust way to detect densely connected structures with applications to bio-informatics and social network analysis. However, enumerating quasi-cliques in a graph is a challenging problem, even harder than the problem of enumerating cliques. We consider the enumeration of top-k degree-based quasi-cliques, and make the following contributions: (1) We show that even the problem of detecting if a given quasi-clique is maximal (i.e. not contained within another quasi-clique) is NP-hard (2) We present a novel heuristic algorithm KernelQC to enumerate the k largest quasi-cliques in a graph. Our method is based on identifying kernels of extremely dense subgraphs within a graph, following by growing subgraphs around these kernels, to arrive at quasi-cliques with the required densities (3) Experimental results show that our algorithm accurately enumerates quasi-cliques from a graph, is much faster than current state-of-the-art methods for quasi-clique enumeration (often more than three orders of magnitude faster), and can scale to larger graphs than current methods.Comment: 10 page
    corecore