4 research outputs found

    SpreadCluster: Recovering Versioned Spreadsheets through Similarity-Based Clustering

    Full text link
    Version information plays an important role in spreadsheet understanding, maintaining and quality improving. However, end users rarely use version control tools to document spreadsheet version information. Thus, the spreadsheet version information is missing, and different versions of a spreadsheet coexist as individual and similar spreadsheets. Existing approaches try to recover spreadsheet version information through clustering these similar spreadsheets based on spreadsheet filenames or related email conversation. However, the applicability and accuracy of existing clustering approaches are limited due to the necessary information (e.g., filenames and email conversation) is usually missing. We inspected the versioned spreadsheets in VEnron, which is extracted from the Enron Corporation. In VEnron, the different versions of a spreadsheet are clustered into an evolution group. We observed that the versioned spreadsheets in each evolution group exhibit certain common features (e.g., similar table headers and worksheet names). Based on this observation, we proposed an automatic clustering algorithm, SpreadCluster. SpreadCluster learns the criteria of features from the versioned spreadsheets in VEnron, and then automatically clusters spreadsheets with the similar features into the same evolution group. We applied SpreadCluster on all spreadsheets in the Enron corpus. The evaluation result shows that SpreadCluster could cluster spreadsheets with higher precision and recall rate than the filename-based approach used by VEnron. Based on the clustering result by SpreadCluster, we further created a new versioned spreadsheet corpus VEnron2, which is much bigger than VEnron. We also applied SpreadCluster on the other two spreadsheet corpora FUSE and EUSES. The results show that SpreadCluster can cluster the versioned spreadsheets in these two corpora with high precision.Comment: 12 pages, MSR 201

    Automated Refactoring of Nested-IF Formulae in Spreadsheets

    Full text link
    Spreadsheets are the most popular end-user programming software, where formulae act like programs and also have smells. One well recognized common smell of spreadsheet formulae is nest-IF expressions, which have low readability and high cognitive cost for users, and are error-prone during reuse or maintenance. However, end users usually lack essential programming language knowledge and skills to tackle or even realize the problem. The previous research work has made very initial attempts in this aspect, while no effective and automated approach is currently available. This paper firstly proposes an AST-based automated approach to systematically refactoring nest-IF formulae. The general idea is two-fold. First, we detect and remove logic redundancy on the AST. Second, we identify higher-level semantics that have been fragmented and scattered, and reassemble the syntax using concise built-in functions. A comprehensive evaluation has been conducted against a real-world spreadsheet corpus, which is collected in a leading IT company for research purpose. The results with over 68,000 spreadsheets with 27 million nest-IF formulae reveal that our approach is able to relieve the smell of over 99\% of nest-IF formulae. Over 50% of the refactorings have reduced nesting levels of the nest-IFs by more than a half. In addition, a survey involving 49 participants indicates that for most cases the participants prefer the refactored formulae, and agree on that such automated refactoring approach is necessary and helpful

    Automated model-based spreadsheet debugging

    Get PDF
    Spreadsheets are interactive data organization and calculation programs that are developed in spreadsheet environments like Microsoft Excel or LibreOffice Calc. They are probably the most successful example of end-user developed software and are utilized in almost all branches and at all levels of companies. Although spreadsheets often support important decision making processes, they are, like all software, prone to error. In several cases, faults in spreadsheets have caused severe losses of money. Spreadsheet developers are usually not educated in the practices of software development. As they are thus not familiar with quality control methods like systematic testing or debugging, they have to be supported by the spreadsheet environment itself to search for faults in their calculations in order to ensure the correctness and a better overall quality of the developed spreadsheets. This thesis by publication introduces several approaches to locate faults in spreadsheets. The presented approaches are based on the principles of Model-Based Diagnosis (MBD), which is a technique to find the possible reasons why a system does not behave as expected. Several new algorithmic enhancements of the general MBD approach are combined in this thesis to allow spreadsheet users to debug their spreadsheets and to efficiently find the reason of the observed unexpected output values. In order to assure a seamless integration into the environment that is well-known to the spreadsheet developers, the presented approaches are implemented as an extension for Microsoft Excel. The first part of the thesis outlines the different algorithmic approaches that are introduced in this thesis and summarizes the improvements that were achieved over the general MBD approach. In the second part, the appendix, a selection of the author's publications are presented. These publications comprise (a) a survey of the research in the area of spreadsheet quality assurance, (b) a work describing how to adapt the general MBD approach to spreadsheets, (c) two new algorithmic improvements of the general technique to speed up the calculation of the possible reasons of an observed fault, (d) a new concept and algorithm to efficiently determine questions that a user can be asked during debugging in order to reduce the number of possible reasons for the observed unexpected output values, and (e) a new method to find faults in a set of spreadsheets and a new corpus of real-world spreadsheets containing faults that can be used to evaluate the proposed debugging approaches
    corecore