1,950 research outputs found

    Spanning trees short or small

    Full text link
    We study the problem of finding small trees. Classical network design problems are considered with the additional constraint that only a specified number kk of nodes are required to be connected in the solution. A prototypical example is the kkMST problem in which we require a tree of minimum weight spanning at least kk nodes in an edge-weighted graph. We show that the kkMST problem is NP-hard even for points in the Euclidean plane. We provide approximation algorithms with performance ratio 2k2\sqrt{k} for the general edge-weighted case and O(k1/4)O(k^{1/4}) for the case of points in the plane. Polynomial-time exact solutions are also presented for the class of decomposable graphs which includes trees, series-parallel graphs, and bounded bandwidth graphs, and for points on the boundary of a convex region in the Euclidean plane. We also investigate the problem of finding short trees, and more generally, that of finding networks with minimum diameter. A simple technique is used to provide a polynomial-time solution for finding kk-trees of minimum diameter. We identify easy and hard problems arising in finding short networks using a framework due to T. C. Hu.Comment: 27 page

    The role of twins in computing planar supports of hypergraphs

    Full text link
    A support or realization of a hypergraph HH is a graph GG on the same vertex as HH such that for each hyperedge of HH it holds that its vertices induce a connected subgraph of GG. The NP-hard problem of finding a planar} support has applications in hypergraph drawing and network design. Previous algorithms for the problem assume that twins}---pairs of vertices that are in precisely the same hyperedges---can safely be removed from the input hypergraph. We prove that this assumption is generally wrong, yet that the number of twins necessary for a hypergraph to have a planar support only depends on its number of hyperedges. We give an explicit upper bound on the number of twins necessary for a hypergraph with mm hyperedges to have an rr-outerplanar support, which depends only on rr and mm. Since all additional twins can be safely removed, we obtain a linear-time algorithm for computing rr-outerplanar supports for hypergraphs with mm hyperedges if mm and rr are constant; in other words, the problem is fixed-parameter linear-time solvable with respect to the parameters mm and rr

    Algorithmic Applications of Baur-Strassen's Theorem: Shortest Cycles, Diameter and Matchings

    Full text link
    Consider a directed or an undirected graph with integral edge weights from the set [-W, W], that does not contain negative weight cycles. In this paper, we introduce a general framework for solving problems on such graphs using matrix multiplication. The framework is based on the usage of Baur-Strassen's theorem and of Strojohann's determinant algorithm. It allows us to give new and simple solutions to the following problems: * Finding Shortest Cycles -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for finding shortest cycles in undirected and directed graphs. For directed graphs (and undirected graphs with non-negative weights) this matches the time bounds obtained in 2011 by Roditty and Vassilevska-Williams. On the other hand, no algorithm working in \tilde{O}(Wn^{\omega}) time was previously known for undirected graphs with negative weights. Furthermore our algorithm for a given directed or undirected graph detects whether it contains a negative weight cycle within the same running time. * Computing Diameter and Radius -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for computing a diameter and radius of an undirected or directed graphs. To the best of our knowledge no algorithm with this running time was known for undirected graphs with negative weights. * Finding Minimum Weight Perfect Matchings -- We present an \tilde{O}(Wn^{\omega}) time algorithm for finding minimum weight perfect matchings in undirected graphs. This resolves an open problem posted by Sankowski in 2006, who presented such an algorithm but only in the case of bipartite graphs. In order to solve minimum weight perfect matching problem we develop a novel combinatorial interpretation of the dual solution which sheds new light on this problem. Such a combinatorial interpretation was not know previously, and is of independent interest.Comment: To appear in FOCS 201

    Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials

    Full text link
    This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ΠΣΠ\Pi\Sigma\Pi polynomial. We first prove that the first problem is \#P-hard and then devise a O∗(3ns(n))O^*(3^ns(n)) upper bound for this problem for any polynomial represented by an arithmetic circuit of size s(n)s(n). Later, this upper bound is improved to O∗(2n)O^*(2^n) for ΠΣΠ\Pi\Sigma\Pi polynomials. We then design fully polynomial-time randomized approximation schemes for this problem for ΠΣ\Pi\Sigma polynomials. On the negative side, we prove that, even for ΠΣΠ\Pi\Sigma\Pi polynomials with terms of degree ≤2\le 2, the first problem cannot be approximated at all for any approximation factor ≥1\ge 1, nor {\em "weakly approximated"} in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time λ\lambda-approximation algorithm for ΠΣΠ\Pi\Sigma\Pi polynomials with terms of degrees no more a constant λ≥2\lambda \ge 2. On the inapproximability side, we give a n(1−ϵ)/2n^{(1-\epsilon)/2} lower bound, for any ϵ>0,\epsilon >0, on the approximation factor for ΠΣΠ\Pi\Sigma\Pi polynomials. When terms in these polynomials are constrained to degrees ≤2\le 2, we prove a 1.04761.0476 lower bound, assuming P≠NPP\not=NP; and a higher 1.06041.0604 lower bound, assuming the Unique Games Conjecture

    Random non-crossing plane configurations: A conditioned Galton-Watson tree approach

    Full text link
    We study various models of random non-crossing configurations consisting of diagonals of convex polygons, and focus in particular on uniform dissections and non-crossing trees. For both these models, we prove convergence in distribution towards Aldous' Brownian triangulation of the disk. In the case of dissections, we also refine the study of the maximal vertex degree and validate a conjecture of Bernasconi, Panagiotou and Steger. Our main tool is the use of an underlying Galton-Watson tree structure.Comment: 24 pages, 9 figure

    A Survey of Alternating Permutations

    Get PDF
    This survey of alternating permutations and Euler numbers includes refinements of Euler numbers, other occurrences of Euler numbers, longest alternating subsequences, umbral enumeration of classes of alternating permutations, and the cd-index of the symmetric group.Comment: 32 pages, 7 figure
    • …
    corecore