94 research outputs found

    A linear time algorithm for a variant of the max cut problem in series parallel graphs

    Full text link
    Given a graph G=(V,E)G=(V, E), a connected sides cut (U,V\U)(U, V\backslash U) or δ(U)\delta (U) is the set of edges of E linking all vertices of U to all vertices of V\UV\backslash U such that the induced subgraphs G[U]G[U] and G[V\U]G[V\backslash U] are connected. Given a positive weight function ww defined on EE, the maximum connected sides cut problem (MAX CS CUT) is to find a connected sides cut Ω\Omega such that w(Ω)w(\Omega) is maximum. MAX CS CUT is NP-hard. In this paper, we give a linear time algorithm to solve MAX CS CUT for series parallel graphs. We deduce a linear time algorithm for the minimum cut problem in the same class of graphs without computing the maximum flow.Comment: 6 page

    Max-Cut and Max-Bisection are NP-hard on unit disk graphs

    Get PDF
    We prove that the Max-Cut and Max-Bisection problems are NP-hard on unit disk graphs. We also show that λ\lambda-precision graphs are planar for λ\lambda > 1 / \sqrt{2}$

    An approximation algorithm for the maximum cut problem and its experimental analysis

    Get PDF
    AbstractAn approximation algorithm for the maximum cut problem is designed and analyzed; its performance is experimentally compared with that of a neural algorithm and that of Goemans and Williamson's algorithm. Although the guaranteed quality of our algorithm in the worst-case analysis is poor, we give experimental evidence that its average behavior is better than that of Goemans and Williamson's algorithm
    • …
    corecore