11 research outputs found

    On the Analysis of a Label Propagation Algorithm for Community Detection

    Full text link
    This paper initiates formal analysis of a simple, distributed algorithm for community detection on networks. We analyze an algorithm that we call \textsc{Max-LPA}, both in terms of its convergence time and in terms of the "quality" of the communities detected. \textsc{Max-LPA} is an instance of a class of community detection algorithms called \textit{label propagation} algorithms. As far as we know, most analysis of label propagation algorithms thus far has been empirical in nature and in this paper we seek a theoretical understanding of label propagation algorithms. In our main result, we define a clustered version of \er random graphs with clusters V1,V2,...,VkV_1, V_2,..., V_k where the probability pp, of an edge connecting nodes within a cluster ViV_i is higher than pp', the probability of an edge connecting nodes in distinct clusters. We show that even with fairly general restrictions on pp and pp' (p=Ω(1n1/4ϵ)p = \Omega(\frac{1}{n^{1/4-\epsilon}}) for any ϵ>0\epsilon > 0, p=O(p2)p' = O(p^2), where nn is the number of nodes), \textsc{Max-LPA} detects the clusters V1,V2,...,VnV_1, V_2,..., V_n in just two rounds. Based on this and on empirical results, we conjecture that \textsc{Max-LPA} can correctly and quickly identify communities on clustered \er graphs even when the clusters are much sparser, i.e., with p=clognnp = \frac{c\log n}{n} for some c>1c > 1.Comment: 17 pages. Submitted to ICDCN 201

    Overlapping Community Discovery Methods: A Survey

    Full text link
    The detection of overlapping communities is a challenging problem which is gaining increasing interest in recent years because of the natural attitude of individuals, observed in real-world networks, to participate in multiple groups at the same time. This review gives a description of the main proposals in the field. Besides the methods designed for static networks, some new approaches that deal with the detection of overlapping communities in networks that change over time, are described. Methods are classified with respect to the underlying principles guiding them to obtain a network division in groups sharing part of their nodes. For each of them we also report, when available, computational complexity and web site address from which it is possible to download the software implementing the method.Comment: 20 pages, Book Chapter, appears as Social networks: Analysis and Case Studies, A. Gunduz-Oguducu and A. S. Etaner-Uyar eds, Lecture Notes in Social Networks, pp. 105-125, Springer,201

    Algorithms For Community Identification In Complex Networks

    Get PDF
    First and foremost, I would like to extend my deepest gratitude to my advisor, Professor Narsingh Deo, for his excellent guidance and encouragement, and also for introducing me to this wonderful science of complex networks. Without his support this dissertation would not have been possible. I would also like to thank the members of my research committee, professors Charles Hughes, Ratan Guha, Mainak Chatterjee and Yue Zhao for their advice and guidance during the entire process. I am indebted to the faculty and the staff of the Department of Electrical Engineering and Computer Science for providing me the resources and environment to perform this research. I am grateful to my colleagues in the Parallel and Quantum computing lab for the stimulating discussions and support. I would also like to thank Dr. Hemant Balakrishnan and Dr. Sanjeeb Nanda for their valuable suggestions and guidance. My heartfelt thanks to my parents, Vasudevan and Raji, who have always been supportive of my decisions and encouraged me with their best wishes. I would also like to thank my sister Gomathy, for her words of care and affection during tough times. Special thanks to my friends in Orlando for being there when I needed the
    corecore