143,617 research outputs found

    Faster tuple lattice sieving using spherical locality-sensitive filters

    Get PDF
    To overcome the large memory requirement of classical lattice sieving algorithms for solving hard lattice problems, Bai-Laarhoven-Stehl\'{e} [ANTS 2016] studied tuple lattice sieving, where tuples instead of pairs of lattice vectors are combined to form shorter vectors. Herold-Kirshanova [PKC 2017] recently improved upon their results for arbitrary tuple sizes, for example showing that a triple sieve can solve the shortest vector problem (SVP) in dimension dd in time 20.3717d+o(d)2^{0.3717d + o(d)}, using a technique similar to locality-sensitive hashing for finding nearest neighbors. In this work, we generalize the spherical locality-sensitive filters of Becker-Ducas-Gama-Laarhoven [SODA 2016] to obtain space-time tradeoffs for near neighbor searching on dense data sets, and we apply these techniques to tuple lattice sieving to obtain even better time complexities. For instance, our triple sieve heuristically solves SVP in time 20.3588d+o(d)2^{0.3588d + o(d)}. For practical sieves based on Micciancio-Voulgaris' GaussSieve [SODA 2010], this shows that a triple sieve uses less space and less time than the current best near-linear space double sieve.Comment: 12 pages + references, 2 figures. Subsumed/merged into Cryptology ePrint Archive 2017/228, available at https://ia.cr/2017/122

    Hybrid LSH: Faster Near Neighbors Reporting in High-dimensional Space

    Get PDF
    We study the rr-near neighbors reporting problem (rr-NN), i.e., reporting \emph{all} points in a high-dimensional point set SS that lie within a radius rr of a given query point qq. Our approach builds upon on the locality-sensitive hashing (LSH) framework due to its appealing asymptotic sublinear query time for near neighbor search problems in high-dimensional space. A bottleneck of the traditional LSH scheme for solving rr-NN is that its performance is sensitive to data and query-dependent parameters. On datasets whose data distributions have diverse local density patterns, LSH with inappropriate tuning parameters can sometimes be outperformed by a simple linear search. In this paper, we introduce a hybrid search strategy between LSH-based search and linear search for rr-NN in high-dimensional space. By integrating an auxiliary data structure into LSH hash tables, we can efficiently estimate the computational cost of LSH-based search for a given query regardless of the data distribution. This means that we are able to choose the appropriate search strategy between LSH-based search and linear search to achieve better performance. Moreover, the integrated data structure is time efficient and fits well with many recent state-of-the-art LSH-based approaches. Our experiments on real-world datasets show that the hybrid search approach outperforms (or is comparable to) both LSH-based search and linear search for a wide range of search radii and data distributions in high-dimensional space.Comment: Accepted as a short paper in EDBT 201

    Angle Tree: Nearest Neighbor Search in High Dimensions with Low Intrinsic Dimensionality

    Full text link
    We propose an extension of tree-based space-partitioning indexing structures for data with low intrinsic dimensionality embedded in a high dimensional space. We call this extension an Angle Tree. Our extension can be applied to both classical kd-trees as well as the more recent rp-trees. The key idea of our approach is to store the angle (the "dihedral angle") between the data region (which is a low dimensional manifold) and the random hyperplane that splits the region (the "splitter"). We show that the dihedral angle can be used to obtain a tight lower bound on the distance between the query point and any point on the opposite side of the splitter. This in turn can be used to efficiently prune the search space. We introduce a novel randomized strategy to efficiently calculate the dihedral angle with a high degree of accuracy. Experiments and analysis on real and synthetic data sets shows that the Angle Tree is the most efficient known indexing structure for nearest neighbor queries in terms of preprocessing and space usage while achieving high accuracy and fast search time.Comment: To be submitted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Force-imitated particle swarm optimization using the near-neighbor effect for locating multiple optima

    Get PDF
    Copyright @ Elsevier Inc. All rights reserved.Multimodal optimization problems pose a great challenge of locating multiple optima simultaneously in the search space to the particle swarm optimization (PSO) community. In this paper, the motion principle of particles in PSO is extended by using the near-neighbor effect in mechanical theory, which is a universal phenomenon in nature and society. In the proposed near-neighbor effect based force-imitated PSO (NN-FPSO) algorithm, each particle explores the promising regions where it resides under the composite forces produced by the ā€œnear-neighbor attractorā€ and ā€œnear-neighbor repellerā€, which are selected from the set of memorized personal best positions and the current swarm based on the principles of ā€œsuperior-and-nearerā€ and ā€œinferior-and-nearerā€, respectively. These two forces pull and push a particle to search for the nearby optimum. Hence, particles can simultaneously locate multiple optima quickly and precisely. Experiments are carried out to investigate the performance of NN-FPSO in comparison with a number of state-of-the-art PSO algorithms for locating multiple optima over a series of multimodal benchmark test functions. The experimental results indicate that the proposed NN-FPSO algorithm can efficiently locate multiple optima in multimodal fitness landscapes.This work was supported in part by the Key Program of National Natural Science Foundation (NNSF) of China under Grant 70931001, Grant 70771021, and Grant 70721001, the National Natural Science Foundation (NNSF) of China for Youth under Grant 61004121, Grant 70771021, the Science Fund for Creative Research Group of NNSF of China under Grant 60821063, the PhD Programs Foundation of Ministry of Education of China under Grant 200801450008, and in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1 and Grant EP/E060722/2

    The random link approximation for the Euclidean traveling salesman problem

    Full text link
    The traveling salesman problem (TSP) consists of finding the length of the shortest closed tour visiting N ``cities''. We consider the Euclidean TSP where the cities are distributed randomly and independently in a d-dimensional unit hypercube. Working with periodic boundary conditions and inspired by a remarkable universality in the kth nearest neighbor distribution, we find for the average optimum tour length = beta_E(d) N^{1-1/d} [1+O(1/N)] with beta_E(2) = 0.7120 +- 0.0002 and beta_E(3) = 0.6979 +- 0.0002. We then derive analytical predictions for these quantities using the random link approximation, where the lengths between cities are taken as independent random variables. From the ``cavity'' equations developed by Krauth, Mezard and Parisi, we calculate the associated random link values beta_RL(d). For d=1,2,3, numerical results show that the random link approximation is a good one, with a discrepancy of less than 2.1% between beta_E(d) and beta_RL(d). For large d, we argue that the approximation is exact up to O(1/d^2) and give a conjecture for beta_E(d), in terms of a power series in 1/d, specifying both leading and subleading coefficients.Comment: 29 pages, 6 figures; formatting and typos correcte
    • ā€¦
    corecore