1,239 research outputs found

    Performance study of end-to-end traffic-aware routing

    Get PDF
    There has been a lot research effort on developing reactive routing algorithms for mobile ad hoc networks (MANETs) over the past few years. Most of these algorithms consider finding the shortest path from source to destination in building a route. However, this can lead to some network nodes being more overloaded than the others. In MANETs resources, such as node power and channel bandwidth are often at a premium and, therefore, it is important to optimise their use as much as possible. Consequently, a traffic-aware technique to distribute the load is very desirable in order to make good utilisation of nodes' resources. A number of traffic aware techniques have recently been proposed and can be classified into two categories: end-to-end and on-the-spot. The performance merits of the existing end-to-end traffic aware techniques have been analysed and compared against traditional routing algorithms. There has also been a performance comparison among the existing on-the-spot techniques. However, there has so far been no similar study that evaluates and compares the relative performance merits of end-to-end techniques. In this paper, we describe an extensive performance evaluation of two end-to-end techniques, based on degree of nodal activity and traffic density, using measures based on throughput, end-to-end delay and routing overhead

    Performance evaluation of a new end-to-end traffic-aware routing in MANETs

    Get PDF
    There has been a lot of research effort on developing reactive routing algorithms for mobile ad hoc networks (MANETs) over the past few years. Most of these algorithms consider finding the shortest path from source to destination in building a route. However, this can lead to some network nodes being more overloaded than the others. In MANETs resources, such as node power and channel bandwidth are often at a premium and, therefore, it is important to optimise their use as much as possible. Consequently, a traffic-aware technique to distribute the load is very desirable in order to make good utilisation of nodes' resources. Therefore a number of end-to-end traffic aware techniques have been proposed for reactive routing protocols to deal with this challenging issue. In this paper we contribute to this research effort by proposing a new traffic aware technique that can overcome the limitations of the existing methods. Results from an extensive comparative evaluation show that the new technique has superior performance over similar existing end-to-end techniques in terms of the achieved throughput, end-to-end delay and routing overhead

    Survivability Analysis of the Iridium Low Earth Orbit Satellite Network

    Get PDF
    This thesis evaluates the survivability of the proposed Iridium Low Earth Orbit (LEO) Satellite Network. In addition to the complete Iridium constellation, three degraded Iridium constellations are analyzed. This analysis occurs via the use of simulation models, which are developed to use three dynamic routing algorithms over three loading levels. The Iridium network models use a common set of operating assumptions and system environments. The constellation survivability was determined by comparing packet rejection rates, hop\u27 counts, and average end to end delay performance between the various network scenarios. It was concluded that, based on the established scenarios, the proposed Iridium constellation was highly survivable. Even with only 45 percent of its satellites functioning (modeled with 36 failed Iridium satellites), the average packet delays were never greater than 178 milliseconds (msec), well within the real time packet delivery constraint of 400 msec. As a result, while additional research is necessary, Iridium has demonstrated the network robustness that is required within the military communications environment

    OBGP based QoS analysis for optical virtual private network connection setup

    Get PDF
    In a computer network, clients work with different applications; hence there are requirement of speed, bandwidth, delay etc. The parameters are called as Quality of Service (QoS) parameters. QoS guarantees the performance in a network. To meet the growing demand of Optical Virtual Private Network (OVPN), the Internet Service Providers (ISP) should use multiple techniques which ensure the Quality of Service. For performing data communication between nodes in a network the path to be followed should be known. In this project, BGP/OBGP protocols have been discussed and using this protocol, paths have been found between routers. Then the optimal path is found out based on the path attributes. Also the paths are examined for QoS parameters and the best path is chosen. An OVPN model has been discussed and modified for performing Routing & Wavelength Assignment (RWA) function based on QoS requirement which is expressed in terms of Q-factor and trying to achieve minimum blocking probability of path. The objective of this project is to assign best connection between nodes as per the request from clients operating with various applications

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Mining Relational Paths in Integrated Biomedical Data

    Get PDF
    Much life science and biology research requires an understanding of complex relationships between biological entities (genes, compounds, pathways, diseases, and so on). There is a wealth of data on such relationships in publicly available datasets and publications, but these sources are overlapped and distributed so that finding pertinent relational data is increasingly difficult. Whilst most public datasets have associated tools for searching, there is a lack of searching methods that can cross data sources and that in particular search not only based on the biological entities themselves but also on the relationships between them. In this paper, we demonstrate how graph-theoretic algorithms for mining relational paths can be used together with a previous integrative data resource we developed called Chem2Bio2RDF to extract new biological insights about the relationships between such entities. In particular, we use these methods to investigate the genetic basis of side-effects of thiazolinedione drugs, and in particular make a hypothesis for the recently discovered cardiac side-effects of Rosiglitazone (Avandia) and a prediction for Pioglitazone which is backed up by recent clinical studies

    Low-Stress Bicycling and Network Connectivity

    Get PDF
    For a bicycling network to attract the widest possible segment of the population, its most fundamental attribute should be low-stress connectivity, that is, providing routes between people’s origins and destinations that do not require cyclists to use links that exceed their tolerance for traffic stress, and that do not involve an undue level of detour. The objective of this study is to develop measures of low-stress connectivity that can be used to evaluate and guide bicycle network planning. We propose a set of criteria by which road segments can be classified into four levels of traffic stress (LTS). LTS 1 is suitable for children; LTS 2, based on Dutch bikeway design criteria, represents the traffic stress that most adults will tolerate; LTS 3 and 4 represent greater levels of stress. As a case study, every street in San Jose, California, was classified by LTS. Maps in which only bicycle-friendly links are displayed reveal a city divided into islands within which low-stress bicycling is possible, but separated from one another by barriers that can be crossed only by using high-stress links. Two points in the network are said to be connected at a given level of traffic stress if the subnetwork of links that do not exceed the specified level of stress connects them with a path whose length does not exceed a detour criterion (25% longer than the most direct path). For the network as a whole, we demonstrate two measures of connectivity that can be applied for a given level of traffic stress. One is “percent trips connected,” defined as the fraction of trips in the regional trip table that can be made without exceeding a specified level of stress and without excessive detour. This study used the home-to-work trip table, though in principle any trip table, including all trips, could be used. The second is “percent nodes connected,” a cruder measure that does not require a regional trip table, but measures the fraction of nodes in the street network (mostly street intersections) that are connected to each other. Because traffic analysis zones (TAZs) are too coarse a geographic unit for evaluating connectivity by bicycle, we also demonstrate a method of disaggregating the trip table from the TAZ level to census blocks. For any given TAZ, origins in the home-to-work trip table are allocated in proportion to population, while destinations are allocated based on land-use data. In the base case, the fraction of work trips up to six miles long that are connected at LTS 2 is 4.7%, providing a plausible explanation for the city’s low bicycling share. We show that this figure would almost triple if a proposed slate of improvements, totaling 32 miles in length but with strategically placed segments that provide low-stress connectivity across barriers, were implemented
    corecore